Пример #1
0
def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56'], gapfill=True,
                outdir='', resolution=0.1, max_workers=1, max_tile_size=4096,
                verbose=False, decimation=None, keep_unfilled_copy=False,
                apply_smoothing=True):
    """ Create DEM from multiple radii, and optionally gapfill """
    
    global error
    error = None

    start = datetime.now()

    if not os.path.exists(outdir):
        log.ODM_INFO("Creating %s" % outdir)
        os.mkdir(outdir)

    extent = point_cloud.get_extent(input_point_cloud)
    log.ODM_INFO("Point cloud bounds are [minx: %s, maxx: %s] [miny: %s, maxy: %s]" % (extent['minx'], extent['maxx'], extent['miny'], extent['maxy']))
    ext_width = extent['maxx'] - extent['minx']
    ext_height = extent['maxy'] - extent['miny']

    w, h = (int(math.ceil(ext_width / float(resolution))),
            int(math.ceil(ext_height / float(resolution))))

    # Set a floor, no matter the resolution parameter
    # (sometimes a wrongly estimated scale of the model can cause the resolution
    # to be set unrealistically low, causing errors)
    RES_FLOOR = 64
    if w < RES_FLOOR and h < RES_FLOOR:
        prev_w, prev_h = w, h
        
        if w >= h:
            w, h = (RES_FLOOR, int(math.ceil(ext_height / ext_width * RES_FLOOR)))
        else:
            w, h = (int(math.ceil(ext_width / ext_height * RES_FLOOR)), RES_FLOOR)
        
        floor_ratio = prev_w / float(w)
        resolution *= floor_ratio
        radiuses = [str(float(r) * floor_ratio) for r in radiuses]

        log.ODM_WARNING("Really low resolution DEM requested %s will set floor at %s pixels. Resolution changed to %s. The scale of this reconstruction might be off." % ((prev_w, prev_h), RES_FLOOR, resolution))
        
    final_dem_pixels = w * h

    num_splits = int(max(1, math.ceil(math.log(math.ceil(final_dem_pixels / float(max_tile_size * max_tile_size)))/math.log(2))))
    num_tiles = num_splits * num_splits
    log.ODM_INFO("DEM resolution is %s, max tile size is %s, will split DEM generation into %s tiles" % ((h, w), max_tile_size, num_tiles))

    tile_bounds_width = ext_width / float(num_splits)
    tile_bounds_height = ext_height / float(num_splits)

    tiles = []

    for r in radiuses:
        minx = extent['minx']

        for x in range(num_splits):
            miny = extent['miny']
            if x == num_splits - 1:
                maxx = extent['maxx']
            else:
                maxx = minx + tile_bounds_width

            for y in range(num_splits):
                if y == num_splits - 1:
                    maxy = extent['maxy']
                else:
                    maxy = miny + tile_bounds_height

                filename = os.path.join(os.path.abspath(outdir), '%s_r%s_x%s_y%s.tif' % (dem_type, r, x, y))

                tiles.append({
                    'radius': r,
                    'bounds': {
                        'minx': minx,
                        'maxx': maxx,
                        'miny': miny,
                        'maxy': maxy 
                    },
                    'filename': filename
                })

                miny = maxy
            minx = maxx

    # Sort tiles by increasing radius
    tiles.sort(key=lambda t: float(t['radius']), reverse=True)

    def process_tile(q):
        log.ODM_INFO("Generating %s (%s, radius: %s, resolution: %s)" % (q['filename'], output_type, q['radius'], resolution))
        
        d = pdal.json_gdal_base(q['filename'], output_type, q['radius'], resolution, q['bounds'])

        if dem_type == 'dtm':
            d = pdal.json_add_classification_filter(d, 2)

        if decimation is not None:
            d = pdal.json_add_decimation_filter(d, decimation)

        pdal.json_add_readers(d, [input_point_cloud])
        pdal.run_pipeline(d, verbose=verbose)

    parallel_map(process_tile, tiles, max_workers)

    output_file = "%s.tif" % dem_type
    output_path = os.path.abspath(os.path.join(outdir, output_file))

    # Verify tile results
    for t in tiles: 
        if not os.path.exists(t['filename']):
            raise Exception("Error creating %s, %s failed to be created" % (output_file, t['filename']))
    
    # Create virtual raster
    tiles_vrt_path = os.path.abspath(os.path.join(outdir, "tiles.vrt"))
    run('gdalbuildvrt "%s" "%s"' % (tiles_vrt_path, '" "'.join(map(lambda t: t['filename'], tiles))))

    merged_vrt_path = os.path.abspath(os.path.join(outdir, "merged.vrt"))
    geotiff_tmp_path = os.path.abspath(os.path.join(outdir, 'tiles.tmp.tif'))
    geotiff_small_path = os.path.abspath(os.path.join(outdir, 'tiles.small.tif'))
    geotiff_small_filled_path = os.path.abspath(os.path.join(outdir, 'tiles.small_filled.tif'))
    geotiff_path = os.path.abspath(os.path.join(outdir, 'tiles.tif'))

    # Build GeoTIFF
    kwargs = {
        'max_memory': get_max_memory(),
        'threads': max_workers if max_workers else 'ALL_CPUS',
        'tiles_vrt': tiles_vrt_path,
        'merged_vrt': merged_vrt_path,
        'geotiff': geotiff_path,
        'geotiff_tmp': geotiff_tmp_path,
        'geotiff_small': geotiff_small_path,
        'geotiff_small_filled': geotiff_small_filled_path
    }

    if gapfill:
        # Sometimes, for some reason gdal_fillnodata.py
        # behaves strangely when reading data directly from a .VRT
        # so we need to convert to GeoTIFF first.
        run('gdal_translate '
                '-co NUM_THREADS={threads} '
                '--config GDAL_CACHEMAX {max_memory}% '
                '{tiles_vrt} {geotiff_tmp}'.format(**kwargs))

        # Scale to 10% size
        run('gdal_translate '
            '-co NUM_THREADS={threads} '
            '--config GDAL_CACHEMAX {max_memory}% '
            '-outsize 10% 0 '
            '{geotiff_tmp} {geotiff_small}'.format(**kwargs))

        # Fill scaled
        run('gdal_fillnodata.py '
            '-co NUM_THREADS={threads} '
            '--config GDAL_CACHEMAX {max_memory}% '
            '-b 1 '
            '-of GTiff '
            '{geotiff_small} {geotiff_small_filled}'.format(**kwargs))

        # Merge filled scaled DEM with unfilled DEM using bilinear interpolation
        run('gdalbuildvrt -resolution highest -r bilinear "%s" "%s" "%s"' % (merged_vrt_path, geotiff_small_filled_path, geotiff_tmp_path))
        run('gdal_translate '
            '-co NUM_THREADS={threads} '
            '-co TILED=YES '
            '-co COMPRESS=DEFLATE '
            '--config GDAL_CACHEMAX {max_memory}% '
            '{merged_vrt} {geotiff}'.format(**kwargs))
    else:
        run('gdal_translate '
                '-co NUM_THREADS={threads} '
                '-co TILED=YES '
                '-co COMPRESS=DEFLATE '
                '--config GDAL_CACHEMAX {max_memory}% '
                '{tiles_vrt} {geotiff}'.format(**kwargs))

    if apply_smoothing:
        median_smoothing(geotiff_path, output_path)
        os.remove(geotiff_path)
    else:
        os.rename(geotiff_path, output_path)

    if os.path.exists(geotiff_tmp_path):
        if not keep_unfilled_copy: 
            os.remove(geotiff_tmp_path)
        else:
            os.rename(geotiff_tmp_path, io.related_file_path(output_path, postfix=".unfilled"))
    
    for cleanup_file in [tiles_vrt_path, merged_vrt_path, geotiff_small_path, geotiff_small_filled_path]:
        if os.path.exists(cleanup_file): os.remove(cleanup_file)
    for t in tiles:
        if os.path.exists(t['filename']): os.remove(t['filename'])
    
    log.ODM_INFO('Completed %s in %s' % (output_file, datetime.now() - start))
Пример #2
0
def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56'], gapfill=True,
                outdir='', resolution=0.1, max_workers=1, max_tile_size=2048,
                verbose=False, decimation=None):
    """ Create DEM from multiple radii, and optionally gapfill """
    global error
    error = None

    start = datetime.now()

    if not os.path.exists(outdir):
        log.ODM_INFO("Creating %s" % outdir)
        os.mkdir(outdir)

    extent = point_cloud.get_extent(input_point_cloud)
    log.ODM_INFO("Point cloud bounds are [minx: %s, maxx: %s] [miny: %s, maxy: %s]" % (extent['minx'], extent['maxx'], extent['miny'], extent['maxy']))
    ext_width = extent['maxx'] - extent['minx']
    ext_height = extent['maxy'] - extent['miny']

    final_dem_resolution = (int(math.ceil(ext_width / float(resolution))),
                            int(math.ceil(ext_height / float(resolution))))
    final_dem_pixels = final_dem_resolution[0] * final_dem_resolution[1]

    num_splits = int(max(1, math.ceil(math.log(math.ceil(final_dem_pixels / float(max_tile_size * max_tile_size)))/math.log(2))))
    num_tiles = num_splits * num_splits
    log.ODM_INFO("DEM resolution is %s, max tile size is %s, will split DEM generation into %s tiles" % (final_dem_resolution, max_tile_size, num_tiles))

    tile_bounds_width = ext_width / float(num_splits)
    tile_bounds_height = ext_height / float(num_splits)

    tiles = []

    for r in radiuses:
        minx = extent['minx']

        for x in range(num_splits):
            miny = extent['miny']
            if x == num_splits - 1:
                maxx = extent['maxx']
            else:
                maxx = minx + tile_bounds_width

            for y in range(num_splits):
                if y == num_splits - 1:
                    maxy = extent['maxy']
                else:
                    maxy = miny + tile_bounds_height

                filename = os.path.join(os.path.abspath(outdir), '%s_r%s_x%s_y%s.tif' % (dem_type, r, x, y))

                tiles.append({
                    'radius': r,
                    'bounds': {
                        'minx': minx,
                        'maxx': maxx,
                        'miny': miny,
                        'maxy': maxy 
                    },
                    'filename': filename
                })

                miny = maxy
            minx = maxx

    # Sort tiles by increasing radius
    tiles.sort(key=lambda t: float(t['radius']), reverse=True)

    def process_one(q):
        log.ODM_INFO("Generating %s (%s, radius: %s, resolution: %s)" % (q['filename'], output_type, q['radius'], resolution))
        
        d = pdal.json_gdal_base(q['filename'], output_type, q['radius'], resolution, q['bounds'])

        if dem_type == 'dsm':
            d = pdal.json_add_classification_filter(d, 2, equality='max')
        elif dem_type == 'dtm':
            d = pdal.json_add_classification_filter(d, 2)

        if decimation is not None:
            d = pdal.json_add_decimation_filter(d, decimation)

        pdal.json_add_readers(d, [input_point_cloud])
        pdal.run_pipeline(d, verbose=verbose)

    def worker():
        global error

        while True:
            (num, q) = pq.get()
            if q is None or error is not None:
                pq.task_done()
                break

            try:
                process_one(q)
            except Exception as e:
                error = e
            finally:
                pq.task_done()

    if max_workers > 1:
        use_single_thread = False
        pq = queue.PriorityQueue()
        threads = []
        for i in range(max_workers):
            t = threading.Thread(target=worker)
            t.start()
            threads.append(t)

        for t in tiles:
            pq.put((i, t.copy()))

        def stop_workers():
            for i in range(len(threads)):
                pq.put((-1, None))
            for t in threads:
                t.join()

        # block until all tasks are done
        try:
            while pq.unfinished_tasks > 0:
                time.sleep(0.5)
        except KeyboardInterrupt:
            print("CTRL+C terminating...")
            stop_workers()
            sys.exit(1)

        stop_workers()

        if error is not None:
            # Try to reprocess using a single thread
            # in case this was a memory error
            log.ODM_WARNING("DEM processing failed with multiple threads, let's retry with a single thread...")
            use_single_thread = True
    else:
        use_single_thread = True

    if use_single_thread:
        # Boring, single thread processing
        for q in tiles:
            process_one(q)

    output_file = "%s.tif" % dem_type
    output_path = os.path.abspath(os.path.join(outdir, output_file))

    # Verify tile results
    for t in tiles: 
        if not os.path.exists(t['filename']):
            raise Exception("Error creating %s, %s failed to be created" % (output_file, t['filename']))
    
    # Create virtual raster
    vrt_path = os.path.abspath(os.path.join(outdir, "merged.vrt"))
    run('gdalbuildvrt "%s" "%s"' % (vrt_path, '" "'.join(map(lambda t: t['filename'], tiles))))

    geotiff_tmp_path = os.path.abspath(os.path.join(outdir, 'merged.tmp.tif'))
    geotiff_path = os.path.abspath(os.path.join(outdir, 'merged.tif'))

    # Build GeoTIFF
    kwargs = {
        'max_memory': get_max_memory(),
        'threads': max_workers if max_workers else 'ALL_CPUS',
        'vrt': vrt_path,
        'geotiff': geotiff_path,
        'geotiff_tmp': geotiff_tmp_path
    }

    if gapfill:
        # Sometimes, for some reason gdal_fillnodata.py
        # behaves strangely when reading data directly from a .VRT
        # so we need to convert to GeoTIFF first.
        run('gdal_translate '
                '-co NUM_THREADS={threads} '
                '--config GDAL_CACHEMAX {max_memory}% '
                '{vrt} {geotiff_tmp}'.format(**kwargs))

        run('gdal_fillnodata.py '
            '-co NUM_THREADS={threads} '
            '--config GDAL_CACHEMAX {max_memory}% '
            '-b 1 '
            '-of GTiff '
            '{geotiff_tmp} {geotiff}'.format(**kwargs))
    else:
        run('gdal_translate '
                '-co NUM_THREADS={threads} '
                '--config GDAL_CACHEMAX {max_memory}% '
                '{vrt} {geotiff}'.format(**kwargs))

    post_process(geotiff_path, output_path)
    os.remove(geotiff_path)

    if os.path.exists(geotiff_tmp_path): os.remove(geotiff_tmp_path)
    if os.path.exists(vrt_path): os.remove(vrt_path)
    for t in tiles:
        if os.path.exists(t['filename']): os.remove(t['filename'])
    
    log.ODM_INFO('Completed %s in %s' % (output_file, datetime.now() - start))