def snapping_similarity(): snapping_estimates = [] laplace_estimates = [] with sn.Analysis(strict_parameter_checks=False): PUMS = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) age = sn.impute(sn.to_float(PUMS['age']), data_lower=0., data_upper=100., data_rows=1000) for i in range(100): snapping_component = sn.dp_mean(age, mechanism="snapping", privacy_usage={ "epsilon": 1.0, "delta": 1E-6 }) laplace_component = sn.dp_mean(age, mechanism="laplace", privacy_usage={ "epsilon": 1.0, "delta": 1E-6 }) snapping_estimates.append(snapping_component.value) laplace_estimates.append(laplace_component.value) print(sum(snapping_estimates) / len(snapping_estimates)) print(sum(laplace_estimates) / len(laplace_estimates))
def test_properties(): with sn.Analysis(): # load data data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) # establish data age_dt = sn.cast(data['age'], 'FLOAT') # ensure data are non-null non_null_age_dt = sn.impute(age_dt, distribution='Uniform', lower=0., upper=100.) clamped = sn.clamp(age_dt, lower=0., upper=100.) # create potential for null data again potentially_null_age_dt = non_null_age_dt / 0. # print('original properties:\n{0}\n\n'.format(age_dt.properties)) print('properties after imputation:\n{0}\n\n'.format( non_null_age_dt.nullity)) print('properties after nan mult:\n{0}\n\n'.format( potentially_null_age_dt.nullity)) print("lower", clamped.lower) print("upper", clamped.upper) print("releasable", clamped.releasable) # print("props", clamped.properties) print("data_type", clamped.data_type) print("categories", clamped.categories)
def analytic_gaussian_similarity(): analytic_gauss_estimates = [] gauss_estimates = [] with sn.Analysis(strict_parameter_checks=False): PUMS = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) age = sn.impute(sn.to_float(PUMS['age']), data_lower=0., data_upper=100., data_rows=1000) for i in range(100): an_gauss_component = sn.dp_mean(age, mechanism="AnalyticGaussian", privacy_usage={ "epsilon": 1.0, "delta": 1E-6 }) gauss_component = sn.dp_mean(age, mechanism="Gaussian", privacy_usage={ "epsilon": 1.0, "delta": 1E-6 }) # this triggers an analysis.release (which also computes gauss_component) analytic_gauss_estimates.append(an_gauss_component.value) gauss_estimates.append(gauss_component.value) print(sum(analytic_gauss_estimates) / len(analytic_gauss_estimates)) print(sum(gauss_estimates) / len(gauss_estimates))
def test_private_clamped_sum_helpers(): # Compute the CI with smartnoise with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_DATA_PATH, column_names=TEST_DATA_COLUMNS) D = sn.to_float(data["age"]) D_tilde = sn.resize(sn.clamp(data=D, lower=0.0, upper=100.0), number_rows=1000,) release = sn.dp_sum(data=sn.impute(D_tilde), privacy_usage={"epsilon": 1.0}) smartnoise_ci = release.get_accuracy(0.05) op = PrivateClampedSum(lower_bound=0, upper_bound=100) eeprivacy_ci = op.confidence_interval(epsilon=1, confidence=0.95) assert pytest.approx(smartnoise_ci, abs=0.001) == eeprivacy_ci
def try_sn(): # establish data information #data_path = 'https://raw.githubusercontent.com/opendp/smartnoise-samples/86-requirements-fix/analysis/data/PUMS_california_demographics_1000/data.csv' data_path = os.path.join('.', 'data', 'PUMS_california_demographics_1000', 'data.csv') data_path = os.path.abspath(data_path) print('data_path', data_path) var_names = ["age", "sex", "educ", "race", "income", "married", "pid"] D = pd.read_csv(data_path)['age'] D_mean_age = np.mean(D) print('D_mean_age', D_mean_age) # establish extra information for this simulation age_lower_bound = 0. age_upper_bound = 100. D_tilde = np.clip(D, age_lower_bound, age_upper_bound) D_tilde_mean_age = np.mean(D_tilde) data_size = 1000 df = pd.read_csv(data_path) df_as_array = [list(row) for row in df.itertuples()] #df.values.tolist() print('D.values', df_as_array) n_sims = 2 releases = [] with sn.Analysis(dynamic=True) as analysis: data = sn.Dataset(path=data_path, column_names=var_names) #data = sn.Dataset(value=df_as_array, column_names=var_names) D = sn.to_float(data['age']) # preprocess data (resize is a no-op because we have the correct data size) D_tilde = sn.resize(sn.clamp(data=D, lower=0., upper=100.), number_rows=data_size) for index in range(n_sims): # get DP mean of age releases.append( sn.dp_mean(data=sn.impute(D_tilde), privacy_usage={'epsilon': 1})) accuracy = releases[0].get_accuracy(0.05) analysis.release() dp_values = [release.value for release in releases] print( 'Accuracy interval (with accuracy value {0}) contains the true mean on D_tilde with probability {1}' .format( round(accuracy, 4), np.mean([(D_tilde_mean_age >= val - accuracy) & (D_tilde_mean_age <= val + accuracy) for val in dp_values])))
def test_divide(): with sn.Analysis(): data_A = generate_synthetic(float, variants=['Random']) f_random = data_A['F_Random'] imputed = sn.impute(f_random, lower=0., upper=10.) clamped_nonzero = sn.clamp(imputed, lower=1., upper=10.) clamped_zero = sn.clamp(imputed, lower=0., upper=10.) # test properties assert f_random.nullity assert not imputed.nullity assert (2. / imputed).nullity assert (f_random / imputed).nullity assert (2. / clamped_zero).nullity
def test_median_education(): # import pandas as pd # print(pd.read_csv(data_path)['value'].median()) with sn.Analysis(filter_level="all") as analysis: data = sn.Dataset(path=TEST_EDUC_PATH, column_names=TEST_EDUC_NAMES) candidates = list(map(float, range(1, 200, 2))) median_scores = sn.median(sn.impute(sn.to_float(data['value']), 100., 200.), candidates=candidates) # print(list(zip(candidates, median_scores.value[0]))) dp_median = sn.exponential_mechanism(median_scores, candidates=candidates, privacy_usage={"epsilon": 100.}) print(dp_median.value) analysis.release()
def test_mechanism(args, constructor): with sn.Analysis() as analysis: PUMS = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) categorical = sn.resize(sn.clamp(PUMS['sex'], categories=["0", "1"], null_value="0"), number_rows=1000) numeric = sn.impute(sn.to_float(PUMS['age']), data_lower=0., data_upper=100., data_rows=1000) all = constructor(numeric, categorical, args) analysis.release() all_values = {stat: all[stat].value for stat in all} print() pprint(all_values) for value in all_values.values(): assert value is not None
def test_private_clamped_mean_helpers(): # Compute the CI with smartnoise with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_DATA_PATH, column_names=TEST_DATA_COLUMNS) D = sn.to_float(data["age"]) D_tilde = sn.resize(sn.clamp(data=D, lower=0.0, upper=100.0), number_rows=1000,) release = sn.dp_mean(data=sn.impute(D_tilde), privacy_usage={"epsilon": 1.0}) smartnoise_ci = release.get_accuracy(0.05) # Compute the CI with eeprivacy op = PrivateClampedMean(lower_bound=0, upper_bound=100) eeprivacy_ci = op.confidence_interval(epsilon=1, N=1000, confidence=0.95) # Compare computed confidence intervals assert pytest.approx(smartnoise_ci, abs=0.001) == eeprivacy_ci smartnoise_epsilon = release.from_accuracy(value=1, alpha=0.05)[0]["epsilon"] eeprivacy_epsilon = op.epsilon_for_confidence_interval( target_ci=1, N=1000, confidence=0.95 ) # Compare computed epsilons for confidence interval assert pytest.approx(smartnoise_epsilon, abs=0.001) == eeprivacy_epsilon
def test_dp_linear_stats(run=True): with sn.Analysis() as analysis: dataset_pums = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) age = dataset_pums['age'] analysis.release() num_records = sn.dp_count(age, privacy_usage={'epsilon': .5}, lower=0, upper=10000) analysis.release() print("number of records:", num_records.value) vars = sn.to_float(dataset_pums[["age", "income"]]) covariance = sn.dp_covariance(data=vars, privacy_usage={'epsilon': .5}, data_lower=[0., 0.], data_upper=[150., 150000.], data_rows=num_records) print("covariance released") num_means = sn.dp_mean(data=vars, privacy_usage={'epsilon': .5}, data_lower=[0., 0.], data_upper=[150., 150000.], data_rows=num_records) analysis.release() print("covariance:\n", covariance.value) print("means:\n", num_means.value) age = sn.to_float(age) age_variance = sn.dp_variance(age, privacy_usage={'epsilon': .5}, data_lower=0., data_upper=150., data_rows=num_records) analysis.release() print("age variance:", age_variance.value) # If I clamp, impute, resize, then I can reuse their properties for multiple statistics clamped_age = sn.clamp(age, lower=0., upper=100.) imputed_age = sn.impute(clamped_age) preprocessed_age = sn.resize(imputed_age, number_rows=num_records) # properties necessary for mean are statically known mean = sn.dp_mean(preprocessed_age, privacy_usage={'epsilon': .5}) # properties necessary for variance are statically known variance = sn.dp_variance(preprocessed_age, privacy_usage={'epsilon': .5}) # sum doesn't need n, so I pass the data in before resizing age_sum = sn.dp_sum(imputed_age, privacy_usage={'epsilon': .5}) # mean with lower, upper properties propagated up from prior bounds transformed_mean = sn.dp_mean(-(preprocessed_age + 2.), privacy_usage={'epsilon': .5}) analysis.release() print("age transformed mean:", transformed_mean.value) # releases may be pieced together from combinations of smaller components custom_mean = sn.laplace_mechanism(sn.mean(preprocessed_age), privacy_usage={'epsilon': .5}) custom_maximum = sn.laplace_mechanism(sn.maximum(preprocessed_age), privacy_usage={'epsilon': .5}) custom_maximum = sn.laplace_mechanism(sn.maximum(preprocessed_age), privacy_usage={'epsilon': .5}) custom_quantile = sn.laplace_mechanism(sn.quantile(preprocessed_age, alpha=.5), privacy_usage={'epsilon': 500}) income = sn.to_float(dataset_pums['income']) income_max = sn.laplace_mechanism(sn.maximum(income, data_lower=0., data_upper=1000000.), privacy_usage={'epsilon': 10}) # releases may also be postprocessed and reused as arguments to more components age_sum + custom_maximum * 23. analysis.release() print("laplace quantile:", custom_quantile.value) age_histogram = sn.dp_histogram(sn.to_int(age, lower=0, upper=100), edges=list(range(0, 100, 25)), null_value=150, privacy_usage={'epsilon': 2.}) sex_histogram = sn.dp_histogram(sn.to_bool(dataset_pums['sex'], true_label="1"), privacy_usage={'epsilon': 2.}) education_histogram = sn.dp_histogram(dataset_pums['educ'], categories=["5", "7", "10"], null_value="-1", privacy_usage={'epsilon': 2.}) analysis.release() print("age histogram: ", age_histogram.value) print("sex histogram: ", sex_histogram.value) print("education histogram: ", education_histogram.value) if run: analysis.release() # get the mean computed when release() was called print(mean.value) print(variance.value) return analysis
def test_everything(run=True): with sn.Analysis() as analysis: data = sn.Dataset(path=TEST_PUMS_PATH, column_names=TEST_PUMS_NAMES) age_int = sn.to_int(data['age'], 0, 150) sex = sn.to_bool(data['sex'], "1") educ = sn.to_float(data['educ']) race = data['race'] income = sn.to_float(data['income']) married = sn.to_bool(data['married'], "1") numerics = sn.to_float(data[['age', 'income']]) # intentionally busted component # print("invalid component id ", (sex + "a").component_id) # broadcast scalar over 2d, broadcast scalar over 1d, columnar broadcasting, left and right mul numerics * 2. + 2. * educ # add different values for each column numerics + [[1., 2.]] # index into first column age = sn.index(numerics, indices=0) income = sn.index(numerics, mask=[False, True]) # boolean ops and broadcasting mask = sex & married | (~married ^ False) | (age > 50.) | (age_int == 25) # numerical clamping sn.clamp(numerics, 0., [150., 150_000.]) sn.clamp(data['educ'], categories=[str(i) for i in range(8, 10)], null_value="-1") sn.count(mask) sn.covariance(age, income) sn.digitize(educ, edges=[1., 3., 10.], null_value=-1) # checks for safety against division by zero income / 2. income / sn.clamp(educ, 5., 20.) sn.dp_count(data, privacy_usage={"epsilon": 0.5}) sn.dp_count(mask, privacy_usage={"epsilon": 0.5}) sn.dp_histogram(mask, privacy_usage={"epsilon": 0.5}) age = sn.impute(sn.clamp(age, 0., 150.)) sn.dp_maximum(age, privacy_usage={"epsilon": 0.5}) sn.dp_minimum(age, privacy_usage={"epsilon": 0.5}) sn.dp_median(age, privacy_usage={"epsilon": 0.5}) age_n = sn.resize(age, number_rows=800) sn.dp_mean(age_n, privacy_usage={"epsilon": 0.5}) sn.dp_raw_moment(age_n, order=3, privacy_usage={"epsilon": 0.5}) sn.dp_sum(age, privacy_usage={"epsilon": 0.5}) sn.dp_variance(age_n, privacy_usage={"epsilon": 0.5}) sn.filter(income, mask) race_histogram = sn.histogram(race, categories=["1", "2", "3"], null_value="3") sn.histogram(income, edges=[0., 10000., 50000.], null_value=-1) sn.dp_histogram(married, privacy_usage={"epsilon": 0.5}) sn.gaussian_mechanism(race_histogram, privacy_usage={ "epsilon": 0.5, "delta": .000001 }) sn.laplace_mechanism(race_histogram, privacy_usage={ "epsilon": 0.5, "delta": .000001 }) sn.raw_moment(educ, order=3) sn.log(sn.clamp(educ, 0.001, 50.)) sn.maximum(educ) sn.mean(educ) sn.minimum(educ) educ % 2. educ**2. sn.quantile(educ, .32) sn.resize(educ, number_rows=1200, lower=0., upper=50.) sn.resize(race, number_rows=1200, categories=["1", "2"], weights=[1, 2]) sn.resize(data[["age", "sex"]], 1200, categories=[["1", "2"], ["a", "b"]], weights=[1, 2]) sn.resize(data[["age", "sex"]], 1200, categories=[["1", "2"], ["a", "b", "c"]], weights=[[1, 2], [3, 7, 2]]) sn.sum(educ) sn.variance(educ) if run: analysis.release() return analysis