Пример #1
0
    def test_bravyi_kitaev_fast_number_excitation_operator(self):
        # using hydrogen Hamiltonian and introducing some number operator terms
        constant = 0
        one_body = numpy.zeros((4, 4))
        one_body[(0, 0)] = .4
        one_body[(1, 1)] = .5
        one_body[(2, 2)] = .6
        one_body[(3, 3)] = .7
        two_body = self.molecular_hamiltonian.two_body_tensor
        # initiating number operator terms for all the possible cases
        two_body[(1, 2, 3, 1)] = 0.1
        two_body[(1, 3, 2, 1)] = 0.1
        two_body[(1, 2, 1, 3)] = 0.15
        two_body[(3, 1, 2, 1)] = 0.15
        two_body[(0, 2, 2, 1)] = 0.09
        two_body[(1, 2, 2, 0)] = 0.09
        two_body[(1, 2, 3, 2)] = 0.11
        two_body[(2, 3, 2, 1)] = 0.11
        two_body[(2, 2, 2, 2)] = 0.1
        molecular_hamiltonian = InteractionOperator(constant, one_body,
                                                    two_body)
        # comparing the eigenspectrum of Hamiltonian
        n_qubits = count_qubits(molecular_hamiltonian)
        bravyi_kitaev_fast_H = bksf.bravyi_kitaev_fast(molecular_hamiltonian)
        jw_H = jordan_wigner(molecular_hamiltonian)
        bravyi_kitaev_fast_H_eig = eigenspectrum(bravyi_kitaev_fast_H)
        jw_H_eig = eigenspectrum(jw_H)
        bravyi_kitaev_fast_H_eig = bravyi_kitaev_fast_H_eig.round(5)
        jw_H_eig = jw_H_eig.round(5)
        evensector_H = 0
        for i in range(numpy.size(jw_H_eig)):
            if bool(
                    numpy.size(
                        numpy.where(jw_H_eig[i] == bravyi_kitaev_fast_H_eig))):
                evensector_H += 1

        # comparing eigenspectrum of number operator
        bravyi_kitaev_fast_n = bksf.number_operator(molecular_hamiltonian)
        jw_n = QubitOperator()
        n_qubits = count_qubits(molecular_hamiltonian)
        for i in range(n_qubits):
            jw_n += jordan_wigner_one_body(i, i)
        jw_eig_spec = eigenspectrum(jw_n)
        bravyi_kitaev_fast_eig_spec = eigenspectrum(bravyi_kitaev_fast_n)
        evensector_n = 0
        for i in range(numpy.size(jw_eig_spec)):
            if bool(
                    numpy.size(
                        numpy.where(
                            jw_eig_spec[i] == bravyi_kitaev_fast_eig_spec))):
                evensector_n += 1
        self.assertEqual(evensector_H, 2**(n_qubits - 1))
        self.assertEqual(evensector_n, 2**(n_qubits - 1))
Пример #2
0
 def test_bravyi_kitaev_fast_jw_hamiltonian(self):
     # make sure half of the jordan-wigner Hamiltonian eigenspectrum can
     # be found in bksf Hamiltonian eigenspectrum.
     n_qubits = count_qubits(self.molecular_hamiltonian)
     bravyi_kitaev_fast_H = bksf.bravyi_kitaev_fast(
         self.molecular_hamiltonian)
     jw_H = jordan_wigner(self.molecular_hamiltonian)
     bravyi_kitaev_fast_H_eig = eigenspectrum(bravyi_kitaev_fast_H)
     jw_H_eig = eigenspectrum(jw_H)
     bravyi_kitaev_fast_H_eig = bravyi_kitaev_fast_H_eig.round(5)
     jw_H_eig = jw_H_eig.round(5)
     evensector = 0
     for i in range(numpy.size(jw_H_eig)):
         if bool(
                 numpy.size(
                     numpy.where(jw_H_eig[i] == bravyi_kitaev_fast_H_eig))):
             evensector += 1
     self.assertEqual(evensector, 2**(n_qubits - 1))
Пример #3
0
    def test_bravyi_kitaev_fast_excitation_terms(self):
        # Testing on-site and excitation terms in Hamiltonian
        constant = 0
        one_body = numpy.array([[1, 2, 0, 3], [2, 1, 2, 0], [0, 2, 1, 2.5],
                                [3, 0, 2.5, 1]])
        # No Coloumb interaction
        two_body = numpy.zeros((4, 4, 4, 4))
        molecular_hamiltonian = InteractionOperator(constant, one_body,
                                                    two_body)
        n_qubits = count_qubits(molecular_hamiltonian)
        # comparing the eigenspectrum of Hamiltonian
        bravyi_kitaev_fast_H = bksf.bravyi_kitaev_fast(molecular_hamiltonian)
        jw_H = jordan_wigner(molecular_hamiltonian)
        bravyi_kitaev_fast_H_eig = eigenspectrum(bravyi_kitaev_fast_H)
        jw_H_eig = eigenspectrum(jw_H)
        bravyi_kitaev_fast_H_eig = bravyi_kitaev_fast_H_eig.round(5)
        jw_H_eig = jw_H_eig.round(5)
        evensector_H = 0
        for i in range(numpy.size(jw_H_eig)):
            if bool(
                    numpy.size(
                        numpy.where(jw_H_eig[i] == bravyi_kitaev_fast_H_eig))):
                evensector_H += 1

        # comparing eigenspectrum of number operator
        bravyi_kitaev_fast_n = bksf.number_operator(molecular_hamiltonian)
        jw_n = QubitOperator()
        n_qubits = count_qubits(molecular_hamiltonian)
        for i in range(n_qubits):
            jw_n += jordan_wigner_one_body(i, i)
        jw_eig_spec = eigenspectrum(jw_n)
        bravyi_kitaev_fast_eig_spec = eigenspectrum(bravyi_kitaev_fast_n)
        evensector_n = 0
        for i in range(numpy.size(jw_eig_spec)):
            if bool(
                    numpy.size(
                        numpy.where(
                            jw_eig_spec[i] == bravyi_kitaev_fast_eig_spec))):
                evensector_n += 1
        self.assertEqual(evensector_H, 2**(n_qubits - 1))
        self.assertEqual(evensector_n, 2**(n_qubits - 1))
Пример #4
0
 def test_bad_input(self):
     with self.assertRaises(TypeError):
         bksf.bravyi_kitaev_fast(FermionOperator())