def main(): args = parse_args() OpenKSModel.list_modules() model: ExpertRecModel = OpenKSModel.get_module("PyTorch", "HGTExpertRec")( "openks/data/nsf_dblp_kg/nsfkg/", args) model.preprocess_data() model.load_data_and_model() logger.info('Training HGT with #param: %d' % model.get_n_params()) model.train_expert() model.evaluate()
parser.add_argument('--nu_datasets', type=int, default=6) parser.add_argument('--num_pass', type=int, default=5, help='num of pass for evaluation') parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--pretrain', action='store_true') parser.add_argument('--is_semi', action='store_true') parser.add_argument('--udata', type=str, default='./udata/stmts-demo-unlabeled-pubmed', help='location of the unlabeled data') parser.add_argument('--AR', action='store_true') parser.add_argument('--TC', action='store_true') parser.add_argument('--TCDEL', action='store_true') parser.add_argument('--SH', action='store_true') parser.add_argument('--DEL', action='store_true') parser.add_argument('--run_eval', action='store_true') args = parser.parse_args() # 算法模型选择配置 platform = 'PyTorch' executor = 'openie' model = 'mimo' print("根据配置,使用 {} 框架,{} 类型的 {} 模型。".format(platform, executor, model)) print("-----------------------------------------------") # 模型训练 executor = OpenKSModel.get_module(platform, executor) hypernym_discovery = executor(args=args) hypernym_discovery.run() print("-----------------------------------------------")
loader_config.data_name = 'my-data-set' # 图谱数据结构载入 graph_loader = GraphLoader(loader_config) graph = graph_loader.graph graph.info_display() ''' 图谱表示学习模型训练 ''' # 列出已加载模型 OpenKSModel.list_modules() # 算法模型选择配置 args = { 'gpu': False, 'learning_rate': 0.001, 'epoch': 10, 'batch_size': 1000, 'optimizer': 'adam', 'hidden_size': 50, 'margin': 4.0, 'model_dir': './', 'eval_freq': 10 } platform = 'Paddle' executor = 'KGLearn' model = 'TransR' print("根据配置,使用 {} 框架,{} 执行器训练 {} 模型。".format(platform, executor, model)) print("-----------------------------------------------") # 模型训练 executor = OpenKSModel.get_module(platform, executor) kglearn = executor(graph=graph, model=OpenKSModel.get_module(platform, model), args=args) kglearn.run() print("-----------------------------------------------")
help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=0, help="random seed for initialization") parser.add_argument("--bertadam", action="store_true", help="If bertadam, then set correct_bias = False") parser.add_argument("--entity_output_dir", type=str, default=None, help="The directory of the prediction files of the entity model") parser.add_argument("--entity_predictions_dev", type=str, default="ent_pred_dev.json", help="The entity prediction file of the dev set") parser.add_argument("--entity_predictions_test", type=str, default="ent_pred_test.json", help="The entity prediction file of the test set") parser.add_argument("--prediction_file", type=str, default="predictions.json", help="The prediction filename for the relation model") parser.add_argument("--feature_file", type=str, default="feature_default", help="The prediction filename for the relation model") parser.add_argument('--task', type=str, default=None, required=True, choices=['ace04', 'ace05', 'scierc']) parser.add_argument('--context_window', type=int, default=0) parser.add_argument('--add_new_tokens', action='store_true', help="Whether to add new tokens as marker tokens instead of using [unusedX] tokens.") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") args = parser.parse_args() platform = 'PyTorch' executor = 'RelationExtraction' model = 'RelationExtraction' print("根据配置,使用 {} 框架,{} 执行器训练 {} 模型。".format(platform, executor, model)) print("-----------------------------------------------") # 模型训练 executor = OpenKSModel.get_module(platform, executor) nero = executor(dataset=dataset, model=OpenKSModel.get_module(platform, model), args=args) nero.run() print("-----------------------------------------------")
# 列出已加载模型 OpenKSModel.list_modules() # 算法模型选择配置 args = { 'extractor': 'topic-rake', 'finetuned': '/path/to/finetuned/word_embedding', 'stopword': '/path/to/domain/stopwords.txt', 'stopword_open': '/path/to/common/stopwords.txt', 'params': { 'MIN_SCORE_TOTAL': 0.2, 'MIN_WORD_LEN': 3, 'SUFFIX_REMOVE': True, 'STOPWORD_SINGLE_CHECK': True, 'OPEN_STOPWORD': True, 'WORD_SEPARATOR': True }, 'result_dir': loader_config.source_uris, 'rank': 'average' } platform = 'MLLib' executor = 'KELearn' model = 'keyphrase-rake-topic' print("根据配置,使用 {} 框架,{} 执行器训练 {} 模型。".format(platform, executor, model)) print("-----------------------------------------------") # 模型训练 executor = OpenKSModel.get_module(platform, executor) text_keyphrase = executor(dataset=dataset, model=OpenKSModel.get_module(platform, model), args=args) text_keyphrase.run() print("-----------------------------------------------")
val_data = demand_data(val_texts, val_abs, val_label) #%% '''TRAINING MODEL''' print('--'*10) print('TRAINING MODEL...') print('--'*10) # from openks.models.pytorch.attn_inter import AttInter from torch_geometric.data import Data from openks.models import OpenKSModel platform = 'PyTorch' model_name = 'AttInter' AttInter = OpenKSModel.get_module(platform, model_name) import argparse def parse_args(args=None): parser = argparse.ArgumentParser( description='Training and Testing Command Predictions Models', ) parser.add_argument('--batch_size', default=1, type=int) parser.add_argument('--feat_dim', default=768, type=int) parser.add_argument('--conv_emb_dim', default=300, type=int) parser.add_argument('--pred_hid_dim', default=84, type=int) parser.add_argument('--graph_pooling', default="mean", type=str) parser.add_argument('--gnn_type', default="gin", type=str) parser.add_argument('--conv_drop_ratio', default=0.0, type=float) parser.add_argument('--JK', type=str, default="last",
OpenKSModel.list_modules() # 算法模型选择配置 args = { 'gpu': True, 'learning_rate': 0.001, 'epoch': 500, 'batch_size': 1024, 'optimizer': 'adam', 'hidden_size': 500, 'margin': 4.0, 'model_dir': './', 'eval_freq': 20, 'gamma': 12.0, 'epsilon': 2.0 } platform = 'PyTorch' executor = 'KGLearn_Dy' model = 'DyE' args['model_dir'] = model + '.pt' print("根据配置,使用 {} 框架,{} 执行器训练 {} 模型。".format(platform, executor, model)) print("-----------------------------------------------") # 模型训练 executor = OpenKSModel.get_module(platform, executor) print('--') print(OpenKSModel.get_module(platform, model)) kglearn = executor(graph=graph, model=OpenKSModel.get_module(platform, model), args=args) kglearn.run() print("-----------------------------------------------")