Пример #1
0
    def test_specify_solver(self):
        import numpy as np

        import openmdao.api as om
        from openmdao.test_suite.components.sellar import SellarDis1withDerivatives, SellarDis2withDerivatives

        prob = om.Problem()
        model = prob.model

        model.add_subsystem('px', om.IndepVarComp('x', 1.0), promotes=['x'])
        model.add_subsystem('pz', om.IndepVarComp('z', np.array([5.0, 2.0])), promotes=['z'])

        model.add_subsystem('d1', SellarDis1withDerivatives(), promotes=['x', 'z', 'y1', 'y2'])
        model.add_subsystem('d2', SellarDis2withDerivatives(), promotes=['z', 'y1', 'y2'])

        model.add_subsystem('obj_cmp', om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                                                   z=np.array([0.0, 0.0]), x=0.0),
                            promotes=['obj', 'x', 'z', 'y1', 'y2'])

        model.add_subsystem('con_cmp1', om.ExecComp('con1 = 3.16 - y1'), promotes=['con1', 'y1'])
        model.add_subsystem('con_cmp2', om.ExecComp('con2 = y2 - 24.0'), promotes=['con2', 'y2'])

        model.nonlinear_solver = om.NonlinearBlockGS()
        model.linear_solver = om.LinearBlockJac()

        prob.setup()
        prob.run_model()

        wrt = ['z']
        of = ['obj']

        J = prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')
        assert_near_equal(J['obj', 'z'][0][0], 9.61001056, .00001)
        assert_near_equal(J['obj', 'z'][0][1], 1.78448534, .00001)
Пример #2
0
    def test_globaljac_err(self):
        prob = om.Problem()
        model = prob.model = om.Group(assembled_jac_type='dense')
        model.add_subsystem('x_param', om.IndepVarComp('length', 3.0),
                            promotes=['length'])
        model.add_subsystem('mycomp', TestExplCompSimpleDense(),
                            promotes=['length', 'width', 'area'])

        model.linear_solver = om.LinearBlockJac(assemble_jac=True)
        prob.setup()

        with self.assertRaises(RuntimeError) as context:
            prob.run_model()
            self.assertEqual(str(context.exception),
                             "Linear solver 'LN: LNBJ' doesn't support assembled jacobians.")
Пример #3
0
    def test_feature_maxiter(self):

        prob = om.Problem()
        model = prob.model

        model.add_subsystem('d1',
                            SellarDis1withDerivatives(),
                            promotes=['x', 'z', 'y1', 'y2'])
        model.add_subsystem('d2',
                            SellarDis2withDerivatives(),
                            promotes=['z', 'y1', 'y2'])

        model.add_subsystem('obj_cmp',
                            om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                                        z=np.array([0.0, 0.0]),
                                        x=0.0),
                            promotes=['obj', 'x', 'z', 'y1', 'y2'])

        model.add_subsystem('con_cmp1',
                            om.ExecComp('con1 = 3.16 - y1'),
                            promotes=['con1', 'y1'])
        model.add_subsystem('con_cmp2',
                            om.ExecComp('con2 = y2 - 24.0'),
                            promotes=['con2', 'y2'])

        model.nonlinear_solver = om.NonlinearBlockGS()

        model.linear_solver = om.LinearBlockJac()
        model.linear_solver.options['maxiter'] = 5

        prob.setup()

        prob.set_val('x', 1.)
        prob.set_val('z', np.array([5.0, 2.0]))

        prob.run_model()

        wrt = ['z']
        of = ['obj']

        J = prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')
        assert_near_equal(J['obj', 'z'][0][0], 9.60230118004, .00001)
        assert_near_equal(J['obj', 'z'][0][1], 1.78022500547, .00001)