Пример #1
0
 def test_multi_surrogate_models_bad_surrogate_dict(self): 
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.sur_d = KrigingSurrogate()
     try: 
         metamodel.model = Simple()
     except RuntimeError,err: 
         self.assertEqual("meta: No default surrogate model is defined and the following outputs do not have a surrogate model: ['c']. "
         "Either specify default_surrogate, or specify a surrogate model for all "
         "outputs.",str(err))
Пример #2
0
 def test_multi_surrogate_models_bad_surrogate_dict(self): 
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.surrogate = {'d':KrigingSurrogate()}
     try: 
         metamodel.model = Simple()
     except ValueError,err: 
         self.assertEqual('meta: No default surrogate model was specified. '
         'Either specify a default, or specify a surrogate model for all '
         'outputs',str(err))
Пример #3
0
 def test_multi_surrogate_models_bad_surrogate_dict(self):
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.surrogate = {'d': KrigingSurrogate()}
     try:
         metamodel.model = Simple()
     except ValueError, err:
         self.assertEqual(
             'meta: No default surrogate model was specified. '
             'Either specify a default, or specify a surrogate model for all '
             'outputs', str(err))
 def test_multi_surrogate_models_bad_surrogate_dict(self):
     metamodel = MetaModel()
     metamodel.name = "meta"
     metamodel.surrogate = {"d": KrigingSurrogate()}
     try:
         metamodel.model = Simple()
     except ValueError, err:
         self.assertEqual(
             "meta: No default surrogate model was specified. "
             "Either specify a default, or specify a surrogate model for all "
             "outputs",
             str(err),
         )
Пример #5
0
    def test_warm_start(self):

        model = set_as_top(Assembly())
        model.add('meta', MetaModel(params=('x1', 'x2'),
                                    responses=('y1', 'y2')))
        model.driver.workflow.add('meta')
        model.meta.default_surrogate = ResponseSurface()
        model.meta.warm_restart = True

        model.meta.params.x1 = [1.0, 3.0]
        model.meta.params.x2 = [1.0, 4.0]
        model.meta.responses.y1 = [3.0, 1.0]
        model.meta.responses.y2 = [1.0, 7.0]

        model.meta.default_surrogate = ResponseSurface()

        model.meta.x1 = 2.0
        model.meta.x2 = 3.0
        model.meta.run()
        assert_rel_error(self, model.meta.y1, 1.9085, .001)
        assert_rel_error(self, model.meta.y2, 3.9203, .001)

        # Adding the 3rd point moves the estimate for that point
        # back to where it should be.

        model.meta.params.x1 = [2.0]
        model.meta.params.x2 = [3.0]
        model.meta.responses.y1 = [2.0]
        model.meta.responses.y2 = [4.0]

        self.assertTrue(model.meta._train == True)
        model.meta.run()
        assert_rel_error(self, model.meta.y1, 2.0, .00001)
        assert_rel_error(self, model.meta.y2, 4.0, .00001)
Пример #6
0
    def test_basics(self):

        model = set_as_top(Assembly())
        model.add('meta', MetaModel(params=('x1', 'x2'),
                                    responses=('y1', 'y2')))
        model.driver.workflow.add('meta')

        model.meta.params.x1 = [1.0, 2.0, 3.0]
        model.meta.params.x2 = [1.0, 3.0, 4.0]
        model.meta.responses.y1 = [3.0, 2.0, 1.0]
        model.meta.responses.y2 = [1.0, 4.0, 7.0]

        model.meta.default_surrogate = ResponseSurface()

        model.meta.x1 = 2.0
        model.meta.x2 = 3.0
        model.meta.run()
        assert_rel_error(self, model.meta.y1, 2.0, .00001)
        assert_rel_error(self, model.meta.y2, 4.0, .00001)

        model.meta.x1 = 2.5
        model.meta.x2 = 3.5
        model.meta.run()
        assert_rel_error(self, model.meta.y1, 1.5934, .001)

        # Slot a new surrogate.
        model.meta.default_surrogate = FloatKrigingSurrogate()

        self.assertTrue(model.meta._train == True)
        model.meta.run()
        assert_rel_error(self, model.meta.y1, 1.4609, .001)
Пример #7
0
 def test_model_change(self):
     metamodel = MetaModel()
     mmins = set(metamodel.list_inputs())
     mmouts = set(metamodel.list_outputs())
     metamodel.surrogate = {'default':KrigingSurrogate()}
     metamodel.model = Simple()
     inputs = set(metamodel.list_inputs())
     outputs = set(metamodel.list_outputs())
     self.assertEquals(inputs-mmins, set(['a','b']))
     self.assertEquals(outputs-mmouts, set(['c','d']))
     
     # now put a different model in
     metamodel.model = Simple2()
     inputs = set(metamodel.list_inputs())
     outputs = set(metamodel.list_outputs())
     self.assertEquals(inputs-mmins, set(['w','x']))
     self.assertEquals(outputs-mmouts, set(['y','z']))
    def test_model_change(self):
        metamodel = MetaModel()
        mmins = set(metamodel.list_inputs())
        mmouts = set(metamodel.list_outputs())
        metamodel.surrogate = {"default": KrigingSurrogate()}
        metamodel.model = Simple()
        inputs = set(metamodel.list_inputs())
        outputs = set(metamodel.list_outputs())
        self.assertEquals(inputs - mmins, set(["a", "b"]))
        self.assertEquals(outputs - mmouts, set(["c", "d"]))

        # now put a different model in
        metamodel.model = Simple2()
        inputs = set(metamodel.list_inputs())
        outputs = set(metamodel.list_outputs())
        self.assertEquals(inputs - mmins, set(["w", "x"]))
        self.assertEquals(outputs - mmouts, set(["y", "z"]))
Пример #9
0
    def test_proxy(self):
        meta = MetaModel()
        meta.default_surrogate = KrigingSurrogate()
        meta.model = SimpleProxy()

        for i in range(3):
            meta.train_next = True
            meta.run()

        self.assertEqual(len(meta._training_data['f_x']), 3)
Пример #10
0
    def _get_assembly(self):
        asm = set_as_top(Assembly())
        asm.add('metamodel', MetaModel())
        asm.add('comp1', Simple())
        asm.add('comp2', Simple())
        asm.metamodel.surrogate = {'default': KrigingSurrogate()}
        asm.metamodel.model = Simple()
        asm.metamodel.recorder = DumbRecorder()
        asm.driver.workflow.add(['metamodel', 'comp1', 'comp2'])

        asm.connect('comp1.c', 'metamodel.a')
        asm.connect('comp1.d', 'metamodel.b')
        asm.connect('metamodel.c', 'comp2.a')
        asm.connect('metamodel.d', 'comp2.b')
        return asm
Пример #11
0
    def test_comp_error(self):
        a = Assembly()
        a.add('m', MetaModel())
        a.m.surrogate = {'default': KrigingSurrogate()}
        a.m.model = DummyError()

        a.m.train_next = True

        a.driver.workflow.add('m')
        try:
            a.run()
        except RuntimeError as err:
            self.assertEqual("m.model: Test Error", str(err))
        else:
            self.fail("RuntimeError expected")
Пример #12
0
    def _trained_asm(self, avals, bvals):
        asm = set_as_top(Assembly())
        asm.add('metamodel', MetaModel())
        asm.metamodel.surrogate = {'default': KrigingSurrogate()}
        asm.metamodel.model = Simple()
        asm.metamodel.recorder = DumbRecorder()
        asm.driver.workflow.add(['metamodel'])

        for a, b in zip(avals, bvals):
            asm.metamodel.a = a
            asm.metamodel.b = b
            asm.metamodel.train_next = 1
            asm.metamodel.run()

        return asm
    def test_proxy(self):
        meta = MetaModel()
        meta.default_surrogate = KrigingSurrogate()
        meta.model = SimpleProxy()

        for i in range(3):
            meta.train_next = True
            meta.run()

        self.assertEqual(len(meta._training_data['f_x']), 3)
Пример #14
0
    def test_multi_surrogate_models(self):

        model = set_as_top(Assembly())
        model.add('meta', MetaModel(params=('x1', 'x2'),
                                    responses=('y1', 'y2')))
        model.driver.workflow.add('meta')
        model.meta.warm_restart = True

        model.meta.params.x1 = [1.0, 3.0]
        model.meta.params.x2 = [1.0, 4.0]
        model.meta.responses.y1 = [3.0, 1.0]
        model.meta.responses.y2 = [1.0, 7.0]

        model.meta.surrogates['y1'] = KrigingSurrogate()
        model.meta.surrogates['y2'] = LogisticRegression()

        model.meta.x1 = 2.0
        model.meta.x2 = 3.0
        model.meta.run()
        self.assertTrue(isinstance(model.meta.y1, NormalDistribution))
        self.assertTrue(isinstance(model.meta.y2, float))

        model.meta.surrogates['y1'] = LogisticRegression()
        model.meta.surrogates['y2'] = KrigingSurrogate()

        model.meta.run()
        self.assertTrue(isinstance(model.meta.y1, float))
        self.assertTrue(isinstance(model.meta.y2, NormalDistribution))

        model.meta.default_surrogate = KrigingSurrogate()
        model.meta.surrogates['y1'] = None
        model.meta.surrogates['y2'] = None

        model.meta.run()
        self.assertTrue(isinstance(model.meta.y1, NormalDistribution))
        self.assertTrue(isinstance(model.meta.y2, NormalDistribution))

        model.meta.surrogates['y1'] = LogisticRegression()

        model.meta.run()
        self.assertTrue(isinstance(model.meta.y1, float))
        self.assertTrue(isinstance(model.meta.y2, NormalDistribution))
Пример #15
0
 def _get_assembly(self, default=True, meta=True):
     asm = set_as_top(Assembly())
     asm.add('comp1', Simple())
     asm.add('comp2', Simple())
     if meta:
         asm.add('metamodel', MetaModel())
         
         if default:
             asm.metamodel.default_surrogate = KrigingSurrogate()
         
         asm.metamodel.model = Simple()
         asm.metamodel.recorder = DumbRecorder()
     else:
         asm.add('metamodel', Simple()) # put a real Simple comp in place of metamodel
         
     asm.driver.workflow.add(['metamodel','comp1','comp2'])
     
     asm.connect('comp1.c','metamodel.a')
     asm.connect('comp1.d','metamodel.b')
     asm.connect('metamodel.c','comp2.a')
     asm.connect('metamodel.d','comp2.b')
     return asm
Пример #16
0
    def test_assy_promotion(self):

        class Trig(Component):

            x = Float(0,iotype="in",units="rad")

            f_x_sin = Float(0.0,iotype="out")
            f_x_cos = Float(0.0,iotype="out")

            def execute(self):
                self.f_x_sin = .5*sin(self.x)
                self.f_x_cos = .5*cos(self.x)


        class TrigAsmb(Assembly):

            x = Float(0,iotype="in",units="rad")

            def configure(self):

                self.add('trig1', Trig())
                self.add('trig2', Trig())

                self.connect('x', 'trig1.x')
                self.connect('trig1.f_x_sin', 'trig2.x')

                self.create_passthrough('trig2.f_x_sin')
                self.create_passthrough('trig2.f_x_cos')

                self.driver.workflow.add(['trig1', 'trig2'])

        top = set_as_top(Assembly())
        top.add("trig_meta_model", MetaModel())
        top.trig_meta_model.model = TrigAsmb()
        top.trig_meta_model.surrogates['f_x_sin'] = FloatKrigingSurrogate()
        top.trig_meta_model.surrogates['f_x_cos'] = FloatKrigingSurrogate()

        # Will error if vars don't promote correctly
        top.run()
Пример #17
0
    def test_multi_surrogate_models_bad_surrogate_dict(self):

        model = set_as_top(Assembly())
        model.add('meta', MetaModel(params=('x1', 'x2'),
                                    responses=('y1', 'y2')))
        model.driver.workflow.add('meta')
        model.meta.warm_restart = True

        model.meta.params.x1 = [1.0, 3.0]
        model.meta.params.x2 = [1.0, 4.0]
        model.meta.responses.y1 = [3.0, 1.0]
        model.meta.responses.y2 = [1.0, 7.0]

        model.meta.surrogates['y1'] = KrigingSurrogate()
        try:
            model.meta.run()
        except RuntimeError as err:
            self.assertEqual("meta: No default surrogate model is defined and "
                             "the following outputs do not have a surrogate "
                             "model: ['y2']. Either specify default_surrogate, "
                             "or specify a surrogate model for all outputs.",
                             str(err))
        else:
            self.fail('ValueError expected')
Пример #18
0
    def test_warm_start(self):
        metamodel = MetaModel()
        metamodel.name = 'meta'
        metamodel.surrogate = {'default': KrigingSurrogate()}
        metamodel.model = Simple()
        metamodel.recorder = DumbRecorder()
        simple = Simple()

        cases = []

        metamodel.a = 1.
        metamodel.b = 2.
        metamodel.train_next = True
        metamodel.run()
        inputs = [('meta2.a', metamodel.a), ('meta2.b', metamodel.b)]
        outputs = [('meta2.c', metamodel.c.mu), ('meta2.d', metamodel.d.mu)]
        cases.append(Case(inputs=inputs, outputs=outputs))

        metamodel.a = 3.
        metamodel.b = 5.
        metamodel.train_next = True
        metamodel.run()
        inputs = [('meta2.a', metamodel.a), ('meta2.b', metamodel.b)]
        outputs = [('meta2.c', metamodel.c.mu), ('meta2.d', metamodel.d.mu)]
        cases.append(Case(inputs=inputs, outputs=outputs))

        case_iter = ListCaseIterator(cases)

        metamodel2 = MetaModel()
        metamodel2.name = 'meta2'
        metamodel2.surrogate = {'default': KrigingSurrogate()}
        metamodel2.model = Simple()
        metamodel2.recorder = DumbRecorder()
        metamodel2.warm_start_data = case_iter

        metamodel2.a = simple.a = 1
        metamodel2.b = simple.b = 2
        metamodel2.run()
        simple.run()

        self.assertEqual(metamodel2.c.getvalue(), 3.)
        self.assertEqual(metamodel2.d.getvalue(), -1.)
        self.assertEqual(metamodel2.c.getvalue(), simple.c)
        self.assertEqual(metamodel2.d.getvalue(), simple.d)
        metamodel = MetaModel()
        metamodel.name = "meta"
        metamodel.surrogate = {"d": KrigingSurrogate()}
        try:
            metamodel.model = Simple()
        except ValueError, err:
            self.assertEqual(
                "meta: No default surrogate model was specified. "
                "Either specify a default, or specify a surrogate model for all "
                "outputs",
                str(err),
            )
        else:
            self.fail("ValueError expected")

        metamodel = MetaModel()
        metamodel.name = "meta"
        metamodel.surrogate = {"d": KrigingSurrogate()}
        metamodel.includes = ["a", "b", "d"]
        try:
            metamodel.model = Simple()
        except ValueError, err:
            if (
                'meta: Dict provided for "surrogates" does not include a value for "c". All outputs must be specified'
                == str(err)
            ):
                self.fail("should not get a value error for variable c. It is not included in the metamodel")

    def test_multi_surrogate_models(self):
        metamodel = MetaModel()
        metamodel.name = "meta"
Пример #20
0
    def test_model_change(self):
        metamodel = MetaModel()
        mmins = set(metamodel.list_inputs())
        mmouts = set(metamodel.list_outputs())
        metamodel.surrogate = {'default': KrigingSurrogate()}
        metamodel.model = Simple()
        inputs = set(metamodel.list_inputs())
        outputs = set(metamodel.list_outputs())
        self.assertEquals(inputs - mmins, set(['a', 'b']))
        self.assertEquals(outputs - mmouts, set(['c', 'd']))

        # now put a different model in
        metamodel.model = Simple2()
        inputs = set(metamodel.list_inputs())
        outputs = set(metamodel.list_outputs())
        self.assertEquals(inputs - mmins, set(['w', 'x']))
        self.assertEquals(outputs - mmouts, set(['y', 'z']))
Пример #21
0
    def test_reset_training_data_event(self):
        metamodel = MetaModel()
        metamodel.name = 'meta'
        metamodel.surrogate = {'default': KrigingSurrogate()}
        metamodel.model = Simple()
        metamodel.recorder = DumbRecorder()
        simple = Simple()

        metamodel.a = 1.
        metamodel.b = 2.
        metamodel.train_next = True
        metamodel.run()

        metamodel.a = 2.
        metamodel.b = 3.
        metamodel.train_next = True
        metamodel.run()
Пример #22
0
    def test_multi_surrogate_models(self):
        metamodel = MetaModel()
        metamodel.name = 'meta'
        metamodel.surrogate = {
            'd': KrigingSurrogate(),
            'c': LogisticRegression()
        }
        metamodel.model = Simple()
        metamodel.recorder = DumbRecorder()
        simple = Simple()

        metamodel.a = simple.a = 1.
        metamodel.b = simple.b = 2.
        metamodel.train_next = True
        simple.run()
        metamodel.run()

        metamodel.a = simple.a = 3.
        metamodel.b = simple.b = 4.
        metamodel.train_next = True
        simple.run()
        metamodel.run()

        self.assertTrue(isinstance(metamodel.d, NormalDistribution))
        self.assertTrue(isinstance(metamodel.c, float))
Пример #23
0
    def test_multi_surrogate_models_bad_surrogate_dict(self):
        metamodel = MetaModel()
        metamodel.name = 'meta'
        metamodel.surrogate = {'d': KrigingSurrogate()}
        try:
            metamodel.model = Simple()
        except ValueError, err:
            self.assertEqual(
                'meta: No default surrogate model was specified. '
                'Either specify a default, or specify a surrogate model for all '
                'outputs', str(err))
        else:
            self.fail('ValueError expected')

        metamodel = MetaModel()
        metamodel.name = 'meta'
        metamodel.surrogate = {'d': KrigingSurrogate()}
        metamodel.includes = ['a', 'b', 'd']
        try:
            metamodel.model = Simple()
        except ValueError, err:
            if 'meta: Dict provided for "surrogates" does not include a value for "c". All outputs must be specified' == str(
                    err):
                self.fail(
                    'should not get a value error for variable c. It is not included in the metamodel'
                )

    def test_multi_surrogate_models(self):
        metamodel = MetaModel()
        metamodel.name = 'meta'
Пример #24
0
    def configure(self):

        self.add('mm', MetaModel())
        self.mm.default_surrogate = KrigingSurrogate()
        self.mm.model = Dummy()
Пример #25
0
    def test_default_surrogate_change(self):
        metamodel = MetaModel()
        mmins = set(metamodel.list_inputs())
        mmouts = set(metamodel.list_outputs())
        metamodel.default_surrogate = KrigingSurrogate()
        metamodel.model = Simple()
        metamodel.default_surrogate = LogisticRegression()
        attrs = metamodel.get_attributes(io_only=False)
        for s in attrs['Slots']:
            self.assertNotEqual(s['name'], 'c')
            self.assertNotEqual(s['name'], 'd')
        inputs = set(metamodel.list_inputs())
        outputs = set(metamodel.list_outputs())
        self.assertEquals(inputs - mmins, set(['a', 'b']))
        self.assertEquals(outputs - mmouts, set(['c', 'd']))
        for i in range(3):
            metamodel.train_next = True
            metamodel.run()

        self.assertTrue(len(metamodel._training_data['c']) == 3)
        self.assertTrue(len(metamodel._training_data['d']) == 3)
        self.assertTrue(len(metamodel._training_input_history) == 3)

        metamodel.includes = ['a', 'b', 'c', 'd']

        self.assertTrue(len(metamodel._training_data['c']) == 3)
        self.assertTrue(len(metamodel._training_data['d']) == 3)
        self.assertTrue(len(metamodel._training_input_history) == 3)

        # removing an output should not clobber the rest of the training data
        metamodel.includes = ['a', 'b', 'c']

        self.assertTrue(len(metamodel._training_data['c']) == 3)
        self.assertTrue('d' not in metamodel._training_data)
        self.assertTrue(len(metamodel._training_input_history) == 3)

        # now put a different model in with the same inputs/outputs
        metamodel.model = SimpleMatch()
        metamodel.includes = ['a', 'b', 'c', 'd']
        inputs = set(metamodel.list_inputs())
        outputs = set(metamodel.list_outputs())
        self.assertEquals(inputs - mmins, set(['a', 'b']))
        self.assertEquals(outputs - mmouts, set(['c', 'd']))

        self.assertTrue(len(metamodel._training_data['c']) == 0)
        self.assertTrue(len(metamodel._training_data['d']) == 0)
        self.assertTrue(len(metamodel._training_input_history) == 0)

        # now put a different model in
        metamodel.model = Simple2()
        metamodel.includes = ['w', 'x', 'y', 'z']
        inputs = set(metamodel.list_inputs())
        outputs = set(metamodel.list_outputs())
        self.assertEquals(inputs - mmins, set(['w', 'x']))
        self.assertEquals(outputs - mmouts, set(['y', 'z']))
Пример #26
0
 def test_reset_training_data_event(self):
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.surrogate = {'default':KrigingSurrogate()}
     metamodel.model = Simple()
     metamodel.recorder = DumbRecorder()
     simple = Simple()
     
     metamodel.a = 1.
     metamodel.b = 2.
     metamodel.train_next = True
     metamodel.run()
     
     metamodel.a = 2.
     metamodel.b = 3.
     metamodel.train_next = True
     metamodel.run()
Пример #27
0
    def __init__(self):
        super(Sim, self).__init__()

        self.add('mm', MetaModel())
        self.mm.surrogate = {'default': KrigingSurrogate()}
        self.mm.model = Dummy()
Пример #28
0
 def test_multi_surrogate_models(self): 
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.surrogate = {'d':KrigingSurrogate(),
                            'c':LogisticRegression()}
     metamodel.model = Simple()
     metamodel.recorder = DumbRecorder()
     simple = Simple()
     
     metamodel.a = simple.a = 1.
     metamodel.b = simple.b = 2.
     metamodel.train_next = True
     simple.run()
     metamodel.run()
     
     metamodel.a = simple.a = 3.
     metamodel.b = simple.b = 4.
     metamodel.train_next = True
     simple.run()
     metamodel.run()
     
     self.assertTrue(isinstance(metamodel.d,NormalDistribution))
     self.assertTrue(isinstance(metamodel.c,float))
Пример #29
0
 
 def test_multi_surrogate_models_bad_surrogate_dict(self): 
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.model = Simple()
     metamodel.surrogates[ 'd' ] = KrigingSurrogate()
     try:
         metamodel.run()
     except RuntimeError,err: 
         self.assertEqual("meta: No default surrogate model is defined and the following outputs do not have a surrogate model: ['c']. "
         "Either specify default_surrogate, or specify a surrogate model for all "
         "outputs.",str(err))
     else: 
         self.fail('ValueError expected')
         
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.surrogates['d'] = KrigingSurrogate()
     metamodel.includes = ['a','b','d']
     try: 
         metamodel.model = Simple()
     except ValueError,err: 
         if 'meta: No surrogate was provided for "c". All outputs must have a surrogate' == str(err):
             self.fail('should not get a value error for variable c. It is not included in the metamodel')
     
 def test_multi_surrogate_models(self): 
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.model = Simple()
     metamodel.surrogates['d'] = KrigingSurrogate()
     metamodel.surrogates['c'] = LogisticRegression()
    def test_model_change(self):
        metamodel = MetaModel()
        mmins = set(metamodel.list_inputs())
        mmouts = set(metamodel.list_outputs())
        metamodel.default_surrogate = KrigingSurrogate()
        metamodel.model = Simple()
        attrs = metamodel.get_attributes(io_only=False)
        for s in attrs['Slots']:
            self.assertNotEqual(s['name'], 'c')
            self.assertNotEqual(s['name'], 'd')
        inputs = set(metamodel.list_inputs())
        outputs = set(metamodel.list_outputs())
        self.assertEquals(inputs-mmins, set(['a','b']))
        self.assertEquals(outputs-mmouts, set(['c','d']))
        for i in range(3):
            metamodel.train_next = True
            metamodel.run()
            
        self.assertTrue(len(metamodel._training_data['c']) == 3)
        self.assertTrue(len(metamodel._training_data['d']) == 3)
        self.assertTrue(len(metamodel._training_input_history) == 3)
        
        metamodel.includes = ['a','b','c','d']
        
        self.assertTrue(len(metamodel._training_data['c']) == 3)
        self.assertTrue(len(metamodel._training_data['d']) == 3)
        self.assertTrue(len(metamodel._training_input_history) == 3)
        
        # removing an output shouldn't clobber the rest of the training data
        metamodel.includes = ['a','b','c']
        
        self.assertTrue(len(metamodel._training_data['c']) == 3)
        self.assertTrue('d' not in metamodel._training_data)
        self.assertTrue(len(metamodel._training_input_history) == 3)
        
        # now put a different model in with the same inputs/outputs
        metamodel.model = SimpleMatch()
        metamodel.includes = ['a','b','c','d']
        inputs = set(metamodel.list_inputs())
        outputs = set(metamodel.list_outputs())
        self.assertEquals(inputs-mmins, set(['a','b']))
        self.assertEquals(outputs-mmouts, set(['c', 'd']))

        self.assertTrue(len(metamodel._training_data['c']) == 0)
        self.assertTrue(len(metamodel._training_data['d']) == 0)
        self.assertTrue(len(metamodel._training_input_history) == 0)

        # now put a different model in
        metamodel.model = Simple2()
        metamodel.includes = ['w','x','y','z']
        inputs = set(metamodel.list_inputs())
        outputs = set(metamodel.list_outputs())
        self.assertEquals(inputs-mmins, set(['w','x']))
        self.assertEquals(outputs-mmouts, set(['y','z']))
Пример #31
0
    def test_default_execute(self):
        metamodel = MetaModel()
        metamodel.name = 'meta'
        metamodel.surrogate = {'default': KrigingSurrogate()}
        metamodel.model = Simple()
        metamodel.recorder = DumbRecorder()
        simple = Simple()

        metamodel.a = simple.a = 1.
        metamodel.b = simple.b = 2.
        metamodel.train_next = True
        simple.run()
        metamodel.run()

        metamodel.a = simple.a = 1.
        metamodel.b = simple.b = 2.
        metamodel.train_next = True
        simple.run()
        metamodel.run()

        self.assertEqual(metamodel.c.getvalue(), 3.)
        self.assertEqual(metamodel.d.getvalue(), -1.)
        self.assertEqual(metamodel.c.getvalue(), simple.c)
        self.assertEqual(metamodel.d.getvalue(), simple.d)
Пример #32
0
 def configure(self):
     mm = MetaModel()
     self.add('mm', mm)
     self.mm.default_surrogate = FloatKrigingSurrogate()
     self.driver.workflow.add('mm')
Пример #33
0
 def test_warm_start(self): 
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.surrogate = {'default':KrigingSurrogate()}
     metamodel.model = Simple()
     metamodel.recorder = DumbRecorder()
     simple = Simple()
     
     cases = []        
     
     metamodel.a = 1.
     metamodel.b = 2.
     metamodel.train_next = True
     metamodel.run()
     inputs = [('meta2.a',metamodel.a),('meta2.b',metamodel.b)]
     outputs = [('meta2.c',metamodel.c.mu),('meta2.d',metamodel.d.mu)]
     cases.append(Case(inputs=inputs,outputs=outputs))
     
     metamodel.a = 3.
     metamodel.b = 5.
     metamodel.train_next = True
     metamodel.run()
     inputs = [('meta2.a',metamodel.a),('meta2.b',metamodel.b)]
     outputs = [('meta2.c',metamodel.c.mu),('meta2.d',metamodel.d.mu)]
     cases.append(Case(inputs=inputs,outputs=outputs))
     
     case_iter = ListCaseIterator(cases)
     
     metamodel2 = MetaModel()
     metamodel2.name = 'meta2'
     metamodel2.surrogate = {'default':KrigingSurrogate()}
     metamodel2.model = Simple()
     metamodel2.recorder = DumbRecorder()
     metamodel2.warm_start_data = case_iter
     
     metamodel2.a = simple.a = 1
     metamodel2.b = simple.b = 2
     metamodel2.run()
     simple.run()
     
     self.assertEqual(metamodel2.c.getvalue(), 3.)
     self.assertEqual(metamodel2.d.getvalue(), -1.)
     self.assertEqual(metamodel2.c.getvalue(), simple.c)
     self.assertEqual(metamodel2.d.getvalue(), simple.d)        
Пример #34
0
     self.assertEqual(metamodel.d.getvalue(), simple.d)
 
 def test_multi_surrogate_models_bad_surrogate_dict(self): 
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.surrogate = {'d':KrigingSurrogate()}
     try: 
         metamodel.model = Simple()
     except ValueError,err: 
         self.assertEqual('meta: No default surrogate model was specified. '
         'Either specify a default, or specify a surrogate model for all '
         'outputs',str(err))
     else: 
         self.fail('ValueError expected')
         
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.surrogate = {'d':KrigingSurrogate()}
     metamodel.includes = ['a','b','d']
     try: 
         metamodel.model = Simple()
     except ValueError,err: 
         if 'meta: Dict provided for "surrogates" does not include a value for "c". All outputs must be specified'==str(err):
             self.fail('should not get a value error for variable c. It is not included in the metamodel')
     
     
 def test_multi_surrogate_models(self): 
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.surrogate = {'d':KrigingSurrogate(),
                            'c':LogisticRegression()}
Пример #35
0
    def configure(self):

        self.add('mm', MetaModel())
        self.mm.surrogate = {'default': KrigingSurrogate()}
        self.mm.model = Dummy()
Пример #36
0
 def test_default_execute(self):
     metamodel = MetaModel()
     metamodel.name = 'meta'
     metamodel.surrogate = {'default':KrigingSurrogate()}
     metamodel.model = Simple()
     metamodel.recorder = DumbRecorder()
     simple = Simple()
     
     metamodel.a = simple.a = 1.
     metamodel.b = simple.b = 2.
     metamodel.train_next = True
     simple.run()
     metamodel.run()
     
     metamodel.a = simple.a = 1.
     metamodel.b = simple.b = 2.
     metamodel.train_next = True
     simple.run()
     metamodel.run()
     
     self.assertEqual(metamodel.c.getvalue(), 3.)
     self.assertEqual(metamodel.d.getvalue(), -1.)
     self.assertEqual(metamodel.c.getvalue(), simple.c)
     self.assertEqual(metamodel.d.getvalue(), simple.d)