Пример #1
0
    def test_specify_solver(self):
        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('px', IndepVarComp('x', 1.0), promotes=['x'])
        model.add_subsystem('pz',
                            IndepVarComp('z', np.array([5.0, 2.0])),
                            promotes=['z'])

        model.add_subsystem('d1',
                            SellarDis1withDerivatives(),
                            promotes=['x', 'z', 'y1', 'y2'])
        model.add_subsystem('d2',
                            SellarDis2withDerivatives(),
                            promotes=['z', 'y1', 'y2'])

        model.add_subsystem('obj_cmp',
                            ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                                     z=np.array([0.0, 0.0]),
                                     x=0.0),
                            promotes=['obj', 'x', 'z', 'y1', 'y2'])

        model.add_subsystem('con_cmp1',
                            ExecComp('con1 = 3.16 - y1'),
                            promotes=['con1', 'y1'])
        model.add_subsystem('con_cmp2',
                            ExecComp('con2 = y2 - 24.0'),
                            promotes=['con2', 'y2'])

        model.nonlinear_solver = NonlinearBlockGS()

        model.linear_solver = ScipyIterativeSolver()

        prob.setup()
        prob.run_model()

        wrt = ['z']
        of = ['obj']

        J = prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')
        assert_rel_error(self, J['obj', 'z'][0][0], 9.61001056, .00001)
        assert_rel_error(self, J['obj', 'z'][0][1], 1.78448534, .00001)
Пример #2
0
    def test_specify_precon(self):

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('px', IndepVarComp('x', 1.0), promotes=['x'])
        model.add_subsystem('pz',
                            IndepVarComp('z', np.array([5.0, 2.0])),
                            promotes=['z'])

        model.add_subsystem('d1',
                            SellarDis1withDerivatives(),
                            promotes=['x', 'z', 'y1', 'y2'])
        model.add_subsystem('d2',
                            SellarDis2withDerivatives(),
                            promotes=['z', 'y1', 'y2'])

        model.add_subsystem('obj_cmp',
                            ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                                     z=np.array([0.0, 0.0]),
                                     x=0.0),
                            promotes=['obj', 'x', 'z', 'y1', 'y2'])

        model.add_subsystem('con_cmp1',
                            ExecComp('con1 = 3.16 - y1'),
                            promotes=['con1', 'y1'])
        model.add_subsystem('con_cmp2',
                            ExecComp('con2 = y2 - 24.0'),
                            promotes=['con2', 'y2'])

        prob.model.nonlinear_solver = NewtonSolver()
        prob.model.linear_solver = ScipyIterativeSolver()

        prob.model.linear_solver.precon = LinearBlockGS()
        prob.model.linear_solver.precon.options['maxiter'] = 2

        prob.setup()
        prob.run_model()

        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)
Пример #3
0
    def test_specify_solver(self):
        from openmdao.api import Problem, NewtonSolver, ScipyIterativeSolver, DirectSolver
        from openmdao.test_suite.components.sellar import SellarDerivatives

        prob = Problem()
        model = prob.model = SellarDerivatives()

        model.nonlinear_solver = newton = NewtonSolver()

        # using a different linear solver for Newton with a looser tolerance
        newton.linear_solver = ScipyIterativeSolver()
        newton.linear_solver.options['atol'] = 1e-4

        # used for analytic derivatives
        model.linear_solver = DirectSolver()

        prob.setup()
        prob.run_model()

        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)
Пример #4
0
    def test_feature_specification(self):
        top = Problem()
        top.model = Group()
        top.model.add_subsystem('px', IndepVarComp('x', 1.0))
        top.model.add_subsystem('comp', ImplCompTwoStates())
        top.model.connect('px.x', 'comp.x')

        top.model.nonlinear_solver = NewtonSolver()
        top.model.nonlinear_solver.options['maxiter'] = 10
        top.model.linear_solver = ScipyIterativeSolver()

        ls = top.model.nonlinear_solver.linesearch = ArmijoGoldsteinLS()
        ls.options['maxiter'] = 10

        top.setup(check=False)

        top['px.x'] = 2.0
        top['comp.y'] = 0.0
        top['comp.z'] = 1.6
        top.run_model()
        assert_rel_error(self, top['comp.z'], 1.5, 1e-8)
    def test_solve_linear_scipy(self):
        """Solve implicit system with ScipyKrylov."""

        # use ScipyIterativeSolver here to check for deprecation warning and verify that the deprecated
        # class still gets the right answer without duplicating this test.
        with warnings.catch_warnings(record=True) as w:
            group = TestImplicitGroup(
                lnSolverClass=lambda: ScipyIterativeSolver(solver=self.
                                                           linear_solver_name))

        self.assertEqual(len(w), 1)
        self.assertTrue(issubclass(w[0].category, DeprecationWarning))
        self.assertEqual(
            str(w[0].message),
            "ScipyIterativeSolver is deprecated.  Use ScipyKrylov instead.")

        p = Problem(group)
        p.setup(check=False)
        p.set_solver_print(level=0)

        # Conclude setup but don't run model.
        p.final_setup()

        d_inputs, d_outputs, d_residuals = group.get_linear_vectors()

        # forward
        d_residuals.set_const(1.0)
        d_outputs.set_const(0.0)
        group.run_solve_linear(['linear'], 'fwd')
        output = d_outputs._data
        assert_rel_error(self, output[1], group.expected_solution[0], 1e-15)
        assert_rel_error(self, output[5], group.expected_solution[1], 1e-15)

        # reverse
        d_outputs.set_const(1.0)
        d_residuals.set_const(0.0)
        group.run_solve_linear(['linear'], 'rev')
        output = d_residuals._data
        assert_rel_error(self, output[1], group.expected_solution[0], 1e-15)
        assert_rel_error(self, output[5], group.expected_solution[1], 1e-15)
Пример #6
0
    def setup(self):
        self.add_subsystem('px', IndepVarComp('x', 1.0))
        self.add_subsystem('pz', IndepVarComp('z', np.array([5.0, 2.0])))

        self.add_subsystem('d1', SellarDis1withDerivatives())
        self.add_subsystem('d2', SellarDis2withDerivatives())

        self.add_subsystem(
            'obj_cmp',
            ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                     z=np.array([0.0, 0.0]),
                     x=0.0))

        self.add_subsystem('con_cmp1', ExecComp('con1 = 3.16 - y1'))
        self.add_subsystem('con_cmp2', ExecComp('con2 = y2 - 24.0'))

        self.connect('px.x', ['d1.x', 'obj_cmp.x'])
        self.connect('pz.z', ['d1.z', 'd2.z', 'obj_cmp.z'])
        self.connect('d1.y1', ['d2.y1', 'obj_cmp.y1', 'con_cmp1.y1'])
        self.connect('d2.y2', ['d1.y2', 'obj_cmp.y2', 'con_cmp2.y2'])

        self.nonlinear_solver = NonlinearBlockGS()
        self.linear_solver = ScipyIterativeSolver()
Пример #7
0
    def test_feature_boundscheck_basic(self):
        top = Problem()
        top.model = Group()
        top.model.add_subsystem('px', IndepVarComp('x', np.ones((3, 1))))
        top.model.add_subsystem('comp', ImplCompTwoStatesArrays())
        top.model.connect('px.x', 'comp.x')

        top.model.nonlinear_solver = NewtonSolver()
        top.model.nonlinear_solver.options['maxiter'] = 10
        top.model.linear_solver = ScipyIterativeSolver()

        top.model.nonlinear_solver.linesearch = BoundsEnforceLS()

        top.setup(check=False)

        # Test lower bounds: should go to the lower bound and stall
        top['px.x'] = 2.0
        top['comp.y'] = 0.
        top['comp.z'] = 1.6
        top.run_model()

        assert_rel_error(self, top['comp.z'][0], [1.5], 1e-8)
        assert_rel_error(self, top['comp.z'][1], [1.5], 1e-8)
        assert_rel_error(self, top['comp.z'][2], [1.5], 1e-8)
Пример #8
0
    def test_deep_analysis_error_iprint(self):

        class ImplCompTwoStatesAE(ImplicitComponent):

            def setup(self):
                self.add_input('x', 0.5)
                self.add_output('y', 0.0)
                self.add_output('z', 2.0, lower=1.5, upper=2.5)

                self.maxiter = 10
                self.atol = 1.0e-12

                self.declare_partials(of='*', wrt='*')

                self.counter = 0

            def apply_nonlinear(self, inputs, outputs, residuals):
                """
                Don't solve; just calculate the residual.
                """

                x = inputs['x']
                y = outputs['y']
                z = outputs['z']

                residuals['y'] = y - x - 2.0*z
                residuals['z'] = x*z + z - 4.0

                self.counter += 1
                if self.counter > 5 and self.counter < 11:
                    raise AnalysisError('catch me')

            def linearize(self, inputs, outputs, jac):
                """
                Analytical derivatives.
                """

                # Output equation
                jac[('y', 'x')] = -1.0
                jac[('y', 'y')] = 1.0
                jac[('y', 'z')] = -2.0

                # State equation
                jac[('z', 'z')] = -inputs['x'] + 1.0
                jac[('z', 'x')] = -outputs['z']


        top = Problem()
        top.model = Group()
        top.model.add_subsystem('px', IndepVarComp('x', 7.0))

        sub = top.model.add_subsystem('sub', Group())
        sub.add_subsystem('comp', ImplCompTwoStatesAE())

        top.model.connect('px.x', 'sub.comp.x')

        top.model.nonlinear_solver = NewtonSolver()
        top.model.nonlinear_solver.options['maxiter'] = 2
        top.model.nonlinear_solver.options['solve_subsystems'] = True
        top.model.linear_solver = ScipyIterativeSolver()

        sub.nonlinear_solver = NewtonSolver()
        sub.nonlinear_solver.options['maxiter'] = 2
        sub.linear_solver = ScipyIterativeSolver()

        ls = top.model.nonlinear_solver.linesearch = ArmijoGoldsteinLS(bound_enforcement='wall')
        ls.options['maxiter'] = 5
        ls.options['alpha'] = 10.0
        ls.options['retry_on_analysis_error'] = True
        ls.options['c'] = 10000.0

        top.setup(check=False)
        top.set_solver_print(level=2)

        stdout = sys.stdout
        strout = StringIO()

        sys.stdout = strout
        try:
            top.run_model()
        finally:
            sys.stdout = stdout

        output = strout.getvalue().split('\n')
        self.assertTrue(output[26].startswith('|  LS: AG 5'))
Пример #9
0
    def test_analysis_error(self):

        class ParaboloidAE(ExplicitComponent):
            """ Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3
            This version raises an analysis error if x < 2.0
            The AE in ParaboloidAE stands for AnalysisError."""

            def __init__(self):
                super(ParaboloidAE, self).__init__()
                self.fail_hard = False

            def setup(self):
                self.add_input('x', val=0.0)
                self.add_input('y', val=0.0)

                self.add_output('f_xy', val=0.0)

                self.declare_partials(of='*', wrt='*')

            def compute(self, inputs, outputs):
                """f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3
                Optimal solution (minimum): x = 6.6667; y = -7.3333
                """
                x = inputs['x']
                y = inputs['y']

                if x < 1.75:
                    raise AnalysisError('Try Again.')

                outputs['f_xy'] = (x-3.0)**2 + x*y + (y+4.0)**2 - 3.0

            def compute_partials(self, inputs, partials):
                """ Jacobian for our paraboloid."""
                x = inputs['x']
                y = inputs['y']

                partials['f_xy','x'] = 2.0*x - 6.0 + y
                partials['f_xy','y'] = 2.0*y + 8.0 + x


        top = Problem()
        top.model = Group()
        top.model.add_subsystem('px', IndepVarComp('x', 1.0))
        top.model.add_subsystem('comp', ImplCompTwoStates())
        top.model.add_subsystem('par', ParaboloidAE())
        top.model.connect('px.x', 'comp.x')
        top.model.connect('comp.z', 'par.x')

        top.model.nonlinear_solver = NewtonSolver()
        top.model.nonlinear_solver.options['maxiter'] = 1
        top.model.linear_solver = ScipyIterativeSolver()

        ls = top.model.nonlinear_solver.linesearch = ArmijoGoldsteinLS(bound_enforcement='vector')
        ls.options['maxiter'] = 10
        ls.options['alpha'] = 1.0
        top.set_solver_print(level=0)

        top.setup(check=False)

        # Test lower bound: should go as far as it can without going past 1.75 and triggering an
        # AnalysisError. It doesn't do a great job, so ends up at 1.8 instead of 1.75
        top['px.x'] = 2.0
        top['comp.y'] = 0.0
        top['comp.z'] = 2.1
        top.run_model()
        assert_rel_error(self, top['comp.z'], 1.8, 1e-8)

        # Test the behavior with the switch turned off.

        top = Problem()
        top.model = Group()
        top.model.add_subsystem('px', IndepVarComp('x', 1.0))
        top.model.add_subsystem('comp', ImplCompTwoStates())
        top.model.add_subsystem('par', ParaboloidAE())
        top.model.connect('px.x', 'comp.x')
        top.model.connect('comp.z', 'par.x')

        top.model.nonlinear_solver = NewtonSolver()
        top.model.nonlinear_solver.options['maxiter'] = 1
        top.model.linear_solver = ScipyIterativeSolver()

        ls = top.model.nonlinear_solver.linesearch = ArmijoGoldsteinLS(bound_enforcement='vector')
        ls.options['maxiter'] = 10
        ls.options['alpha'] = 1.0
        ls.options['retry_on_analysis_error'] = False
        top.set_solver_print(level=0)

        top.setup(check=False)

        top['px.x'] = 2.0
        top['comp.y'] = 0.0
        top['comp.z'] = 2.1

        with self.assertRaises(AnalysisError) as context:
            top.run_model()

        self.assertEqual(str(context.exception), 'Try Again.')
Пример #10
0
 def configure(self):
     self.sub.linear_solver = ScipyIterativeSolver()
     self.sub.state_eq_group.linear_solver = ScipyIterativeSolver()
Пример #11
0
 def configure(self):
     self.mda.linear_solver = ScipyIterativeSolver()
     self.mda.nonlinear_solver = NonlinearBlockGS()
Пример #12
0
                            var_factory=lambda: numpy.zeros(vec_size))
            cname = "C%d" % (num_comps - 1)
            self.add_objective("%s.o0" % cname)
            self.add_constraint("%s.o1" % cname, lower=0.0)

    if 'petsc' in sys.argv:
        vec_class = PetscVector
    else:
        vec_class = DefaultVector

    p = Problem()
    g = p.model

    if 'gmres' in sys.argv:
        from openmdao.solvers.linear.scipy_iter_solver import ScipyIterativeSolver
        p.root.linear_solver = ScipyIterativeSolver()

    g.add_subsystem("P", IndepVarComp('x', numpy.ones(vec_size)))

    g.add_design_var("P.x")

    par = g.add_subsystem("par", ParallelGroup())
    for pt in range(pts):
        ptname = "G%d" % pt
        ptg = par.add_subsystem(ptname, SubGroup())
        #create_dyncomps(ptg, num_comps, 2, 2, 2,
        #var_factory=lambda: numpy.zeros(vec_size))
        g.connect("P.x", "par.%s.C0.i0" % ptname)

        #cname = ptname + '.' + "C%d"%(num_comps-1)
        #g.add_objective("par.%s.o0" % cname)