Пример #1
0
    def _makeDataset(self,
                     inputter,
                     data_file,
                     metadata=None,
                     dataset_size=1,
                     shapes=None):
        if metadata is not None:
            inputter.initialize(metadata)

        self.assertEqual(dataset_size, inputter.get_dataset_size(data_file))

        dataset = inputter.make_dataset(data_file)
        dataset = dataset.map(
            lambda *arg: inputter.process(item_or_tuple(arg)))
        dataset = dataset.padded_batch(
            1, padded_shapes=data.get_padded_shapes(dataset))

        iterator = dataset.make_initializable_iterator()
        tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS,
                             iterator.initializer)
        next_element = iterator.get_next()

        if shapes is not None:
            for features in (next_element,
                             inputter.get_serving_input_receiver().features):
                self.assertNotIn("raw", features)
                for field, shape in six.iteritems(shapes):
                    self.assertIn(field, features)
                    self.assertAllEqual(shape,
                                        features[field].get_shape().as_list())

        transformed = inputter.transform_data(next_element)
        return next_element, transformed
Пример #2
0
  def _makeDataset(self, inputter, data_file, metadata=None, dataset_size=1, shapes=None):
    if metadata is not None:
      inputter.initialize(metadata)

    self.assertEqual(dataset_size, inputter.get_dataset_size(data_file))
    dataset = inputter.make_dataset(data_file)
    dataset = dataset.map(lambda *arg: inputter.process(item_or_tuple(arg)))
    dataset = dataset.padded_batch(1, padded_shapes=data.get_padded_shapes(dataset))

    if compat.is_tf2():
      iterator = None
      features = iter(dataset).next()
    else:
      iterator = dataset.make_initializable_iterator()
      features = iterator.get_next()

    if shapes is not None:
      all_features = [features]
      if not compat.is_tf2() and not inputter.is_target:
        all_features.append(inputter.get_serving_input_receiver().features)
      for f in all_features:
        for field, shape in six.iteritems(shapes):
          self.assertIn(field, f)
          self.assertTrue(f[field].shape.is_compatible_with(shape))

    inputs = inputter.make_inputs(features, training=True)
    if not compat.is_tf2():
      with self.test_session() as sess:
        sess.run(tf.tables_initializer())
        sess.run(tf.global_variables_initializer())
        sess.run(iterator.initializer)
    return self.evaluate((features, inputs))
Пример #3
0
def _first_element(inputter, data_file, metadata):
  inputter.initialize(metadata)
  dataset = inputter.make_dataset(data_file)
  iterator = dataset.make_initializable_iterator()
  tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
  next_element = iterator.get_next()
  data = inputter.process(next_element)
  for key, value in data.items():
    data[key] = tf.expand_dims(value, 0)
  transformed = inputter.transform_data(data)
  return data, transformed
Пример #4
0
def _first_element(inputter, data_file, metadata):
  inputter.initialize(metadata)
  dataset = inputter.make_dataset(data_file)
  iterator = dataset.make_initializable_iterator()
  tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
  next_element = iterator.get_next()
  data = inputter.process(next_element)
  for key, value in six.iteritems(data):
    data[key] = tf.expand_dims(value, 0)
  transformed = inputter.transform_data(data)
  return data, transformed
Пример #5
0
def _first_element(inputter, data_file, metadata=None):
  if metadata is not None:
    inputter.initialize(metadata)
  dataset = inputter.make_dataset(data_file)
  iterator = dataset.make_initializable_iterator()
  tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
  next_element = iterator.get_next()
  data = inputter.process(next_element)
  data_in = {}
  for key, value in six.iteritems(data):
    value = tf.expand_dims(value, 0)
    value.set_shape([None] + inputter.padded_shapes[key])
    data_in[key] = value
  transformed = inputter.transform_data(data_in)
  return data, transformed