def import_data(cls, path, node_file="throats_cellsThroatsGraph_Nodes.txt", graph_file="throats_cellsThroatsGraph.txt", voxel_size=None): r""" Loads network data from an iMorph processed image stack Parameters ---------- path : string The path of the folder where the subfiles are held node_file : string The file that describes the pores and throats, the default iMorph name is: throats_cellsThroatsGraph_Nodes.txt graph_file : string The file that describes the connectivity of the network, the default iMorph name is: throats_cellsThroatsGraph.txt voxel_size : float Allows the user to define a voxel size different than what is contained in the node_file. The value must be in meters. Returns ------- project : list An OpenPNM project object containing a network and a geometry object. The geometry-related data are automatically placed on the geometry object using the ``Imported`` geometry class. """ path = Path(path) node_file = os.path.join(path.resolve(), node_file) graph_file = os.path.join(path.resolve(), graph_file) # Parsing the nodes file with open(node_file, "r") as file: Np = np.fromstring(file.readline().rsplit("=")[1], sep="\t", dtype=int)[0] vox_size = np.fromstring( file.readline().rsplit(")")[1], sep="\t", )[0] # Network always recreated to prevent errors network = GenericNetwork(Np=Np, Nt=0) # Define expected properies network["pore.volume"] = np.nan scrap_lines = [file.readline() for line in range(4)] while True: vals = file.readline().split("\t") if len(vals) == 1: break network["pore.volume"][int(vals[0])] = float(vals[3]) if "pore." + vals[2] not in network.labels(): network["pore." + vals[2]] = False network["pore." + vals[2]][int(vals[0])] = True if voxel_size is None: voxel_size = vox_size * 1.0e-6 # File stores value in microns if voxel_size < 0: raise Exception("Error - Voxel size must be specfied in " + "the Nodes file or as a keyword argument.") # Parsing the graph file with open(graph_file, "r") as file: # Define expected properties network["pore.coords"] = np.zeros((Np, 3)) * np.nan network["pore.types"] = np.nan network["pore.color"] = np.nan network["pore.radius"] = np.nan network["pore.dmax"] = np.nan network["pore.node_number"] = np.nan # Scan file to get pore coordinate data scrap_lines = [file.readline() for line in range(3)] line = file.readline() xmax = 0.0 ymax = 0.0 zmax = 0.0 node_num = 0 while line != "connectivity table\n": vals = np.fromstring(line, sep="\t") xmax = vals[1] if vals[1] > xmax else xmax ymax = vals[2] if vals[2] > ymax else ymax zmax = vals[3] if vals[3] > zmax else zmax network["pore.coords"][int(vals[0]), :] = vals[1:4] network["pore.types"][int(vals[0])] = vals[4] network["pore.color"][int(vals[0])] = vals[5] network["pore.radius"][int(vals[0])] = vals[6] network["pore.dmax"][int(vals[0])] = vals[7] network["pore.node_number"][int(vals[0])] = node_num node_num += 1 line = file.readline() # Scan file to get to connectivity data scrap_lines.append(file.readline()) # Skip line # Create sparse lil array incrementally build adjacency matrix lil = sp.sparse.lil_matrix((Np, Np), dtype=int) while True: vals = np.fromstring(file.readline(), sep="\t", dtype=int) if len(vals) <= 1: break lil.rows[vals[0]] = vals[2:].tolist() lil.data[vals[0]] = np.ones(vals[1]).tolist() # Fixing any negative volumes or distances so they are 1 voxel/micron network["pore.volume"][np.where(network["pore.volume"] < 0)[0]] = 1.0 network["pore.radius"][np.where(network["pore.radius"] < 0)[0]] = 1.0 network["pore.dmax"][np.where(network["pore.dmax"] < 0)[0]] = 1.0 # Add adjacency matrix to OpenPNM network conns = sp.sparse.triu(lil, k=1, format="coo") network.update({"throat.all": np.ones(len(conns.col), dtype=bool)}) network["throat.conns"] = np.vstack([conns.row, conns.col]).T network["pore.to_trim"] = False network["pore.to_trim"][network.pores("*throat")] = True Ts = network.pores("to_trim") new_conns = network.find_neighbor_pores(pores=Ts, flatten=False) extend(network=network, throat_conns=new_conns, labels="new_conns") for item in network.props("pore"): item = item.split(".")[1] arr = np.ones_like(network["pore." + item])[0] arr = np.tile(A=arr, reps=[network.Nt, 1]) * np.nan network["throat." + item] = np.squeeze(arr) network["throat." + item][network.throats("new_conns")] = network["pore." + item][Ts] trim(network=network, pores=Ts) # Setting up boundary pores x_coord, y_coord, z_coord = np.hsplit(network["pore.coords"], 3) network["pore.front_boundary"] = np.ravel(x_coord == 0) network["pore.back_boundary"] = np.ravel(x_coord == xmax) network["pore.left_boundary"] = np.ravel(y_coord == 0) network["pore.right_boundary"] = np.ravel(y_coord == ymax) network["pore.bottom_boundary"] = np.ravel(z_coord == 0) network["pore.top_boundary"] = np.ravel(z_coord == zmax) # Removing any pores that got classified as a boundary pore but # Weren't labled a border_cell_face ps = np.where(~np.in1d(network.pores("*_boundary"), network.pores("border_cell_face")))[0] ps = network.pores("*_boundary")[ps] for side in ["front", "back", "left", "right", "top", "bottom"]: network["pore." + side + "_boundary"][ps] = False # Setting internal label network["pore.internal"] = False network["pore.internal"][network.pores("*_boundary", mode="not")] = True # Adding props to border cell face throats and from pores Ts = np.where( network["throat.conns"][:, 1] > network.pores("border_cell_face")[0] - 1)[0] faces = network["throat.conns"][Ts, 1] for item in network.props("pore"): item = item.split(".")[1] network["throat." + item][Ts] = network["pore." + item][faces] network["pore.volume"][faces] = 0.0 # Applying unit conversions # TODO: Determine if radius and dmax are indeed microns and not voxels network["pore.coords"] = network["pore.coords"] * 1e-6 network["pore.radius"] = network["pore.radius"] * 1e-6 network["pore.dmax"] = network["pore.dmax"] * 1e-6 network["pore.volume"] = network["pore.volume"] * voxel_size**3 network["throat.coords"] = network["throat.coords"] * 1e-6 network["throat.radius"] = network["throat.radius"] * 1e-6 network["throat.dmax"] = network["throat.dmax"] * 1e-6 network["throat.volume"] = network["throat.volume"] * voxel_size**3 return network.project
def load(cls, path, node_file="throats_cellsThroatsGraph_Nodes.txt", graph_file="throats_cellsThroatsGraph.txt", network=None, voxel_size=None, return_geometry=False): r""" Loads network data from an iMorph processed image stack Parameters ---------- path : string The path of the folder where the subfiles are held node_file : string The file that describes the pores and throats, the default iMorph name is: throats_cellsThroatsGraph_Nodes.txt graph_file : string The file that describes the connectivity of the network, the default iMorph name is: throats_cellsThroatsGraph.txt network : OpenPNM Network Object The OpenPNM Network onto which the data should be loaded. If no network is supplied then an empty import network is created and returned. voxel_size : float Allows the user to define a voxel size different than what is contained in the node_file. The value must be in meters. return_geometry : Boolean If True, then all geometrical related properties are removed from the Network object and added to a GenericGeometry object. In this case the method returns a tuple containing (network, geometry). If False (default) then the returned Network will contain all properties that were in the original file. In this case, the user can call the ```split_geometry``` method explicitly to perform the separation. Returns ------- If no Network object is supplied then one will be created and returned. If return_geometry is True, then a tuple is returned containing both the network and a geometry object. """ # path = Path(path) node_file = os.path.join(path.resolve(), node_file) graph_file = os.path.join(path.resolve(), graph_file) # parsing the nodes file with open(node_file, 'r') as file: Np = sp.fromstring(file.readline().rsplit('=')[1], sep='\t', dtype=int)[0] vox_size = sp.fromstring( file.readline().rsplit(')')[1], sep='\t', )[0] # network always recreated to prevent errors network = GenericNetwork(Np=Np, Nt=0) # Define expected properies network['pore.volume'] = sp.nan scrap_lines = [file.readline() for line in range(4)] while True: vals = file.readline().split('\t') if len(vals) == 1: break network['pore.volume'][int(vals[0])] = float(vals[3]) if 'pore.' + vals[2] not in network.labels(): network['pore.' + vals[2]] = False network['pore.' + vals[2]][int(vals[0])] = True if voxel_size is None: voxel_size = vox_size * 1.0E-6 # file stores value in microns if voxel_size < 0: raise (Exception('Error - Voxel size must be specfied in ' + 'the Nodes file or as a keyword argument.')) # parsing the graph file with open(graph_file, 'r') as file: # Define expected properties network['pore.coords'] = sp.zeros((Np, 3)) * sp.nan network['pore.types'] = sp.nan network['pore.color'] = sp.nan network['pore.radius'] = sp.nan network['pore.dmax'] = sp.nan network['pore.node_number'] = sp.nan # Scan file to get pore coordinate data scrap_lines = [file.readline() for line in range(3)] line = file.readline() xmax = 0.0 ymax = 0.0 zmax = 0.0 node_num = 0 while line != 'connectivity table\n': vals = sp.fromstring(line, sep='\t') xmax = vals[1] if vals[1] > xmax else xmax ymax = vals[2] if vals[2] > ymax else ymax zmax = vals[3] if vals[3] > zmax else zmax network['pore.coords'][int(vals[0]), :] = vals[1:4] network['pore.types'][int(vals[0])] = vals[4] network['pore.color'][int(vals[0])] = vals[5] network['pore.radius'][int(vals[0])] = vals[6] network['pore.dmax'][int(vals[0])] = vals[7] network['pore.node_number'][int(vals[0])] = node_num node_num += 1 line = file.readline() # Scan file to get to connectivity data scrap_lines.append(file.readline()) # Skip line # Create sparse lil array incrementally build adjacency matrix lil = sp.sparse.lil_matrix((Np, Np), dtype=int) while True: vals = sp.fromstring(file.readline(), sep='\t', dtype=int) if len(vals) <= 1: break lil.rows[vals[0]] = vals[2:] lil.data[vals[0]] = sp.ones(vals[1]) # fixing any negative volumes or distances so they are 1 voxel/micron network['pore.volume'][sp.where(network['pore.volume'] < 0)[0]] = 1.0 network['pore.radius'][sp.where(network['pore.radius'] < 0)[0]] = 1.0 network['pore.dmax'][sp.where(network['pore.dmax'] < 0)[0]] = 1.0 # Add adjacency matrix to OpenPNM network conns = sp.sparse.triu(lil, k=1, format='coo') network.update({'throat.all': sp.ones(len(conns.col), dtype=bool)}) network['throat.conns'] = sp.vstack([conns.row, conns.col]).T network['pore.to_trim'] = False network['pore.to_trim'][network.pores('*throat')] = True Ts = network.pores('to_trim') new_conns = network.find_neighbor_pores(pores=Ts, flatten=False) extend(network=network, throat_conns=new_conns, labels='new_conns') for item in network.props('pore'): item = item.split('.')[1] arr = sp.ones_like(network['pore.' + item])[0] arr = sp.tile(A=arr, reps=[network.Nt, 1]) * sp.nan network['throat.' + item] = sp.squeeze(arr) network['throat.'+item][network.throats('new_conns')] = \ network['pore.'+item][Ts] trim(network=network, pores=Ts) # setting up boundary pores x_coord, y_coord, z_coord = sp.hsplit(network['pore.coords'], 3) network['pore.front_boundary'] = sp.ravel(x_coord == 0) network['pore.back_boundary'] = sp.ravel(x_coord == xmax) network['pore.left_boundary'] = sp.ravel(y_coord == 0) network['pore.right_boundary'] = sp.ravel(y_coord == ymax) network['pore.bottom_boundary'] = sp.ravel(z_coord == 0) network['pore.top_boundary'] = sp.ravel(z_coord == zmax) # removing any pores that got classified as a boundary pore but # weren't labled a border_cell_face ps = sp.where(~sp.in1d(network.pores('*_boundary'), network.pores('border_cell_face')))[0] ps = network.pores('*_boundary')[ps] for side in ['front', 'back', 'left', 'right', 'top', 'bottom']: network['pore.' + side + '_boundary'][ps] = False # setting internal label network['pore.internal'] = False network['pore.internal'][network.pores('*_boundary', mode='not')] = True # adding props to border cell face throats and from pores Ts = sp.where( network['throat.conns'][:, 1] > network.pores('border_cell_face')[0] - 1)[0] faces = network['throat.conns'][Ts, 1] for item in network.props('pore'): item = item.split('.')[1] network['throat.' + item][Ts] = network['pore.' + item][faces] network['pore.volume'][faces] = 0.0 # applying unit conversions # TODO: Determine if radius and dmax are indeed microns and not voxels network['pore.coords'] = network['pore.coords'] * 1e-6 network['pore.radius'] = network['pore.radius'] * 1e-6 network['pore.dmax'] = network['pore.dmax'] * 1e-6 network['pore.volume'] = network['pore.volume'] * voxel_size**3 network['throat.coords'] = network['throat.coords'] * 1e-6 network['throat.radius'] = network['throat.radius'] * 1e-6 network['throat.dmax'] = network['throat.dmax'] * 1e-6 network['throat.volume'] = network['throat.volume'] * voxel_size**3 return network.project
def load(cls, path, node_file="throats_cellsThroatsGraph_Nodes.txt", graph_file="throats_cellsThroatsGraph.txt", network=None, voxel_size=None, return_geometry=False): r""" Loads network data from an iMorph processed image stack Parameters ---------- path : string The path of the folder where the subfiles are held node_file : string The file that describes the pores and throats, the default iMorph name is: throats_cellsThroatsGraph_Nodes.txt graph_file : string The file that describes the connectivity of the network, the default iMorph name is: throats_cellsThroatsGraph.txt network : OpenPNM Network Object The OpenPNM Network onto which the data should be loaded. If no network is supplied then an empty import network is created and returned. voxel_size : float Allows the user to define a voxel size different than what is contained in the node_file. The value must be in meters. return_geometry : Boolean If True, then all geometrical related properties are removed from the Network object and added to a GenericGeometry object. In this case the method returns a tuple containing (network, geometry). If False (default) then the returned Network will contain all properties that were in the original file. In this case, the user can call the ```split_geometry``` method explicitly to perform the separation. Returns ------- If no Network object is supplied then one will be created and returned. If return_geometry is True, then a tuple is returned containing both the network and a geometry object. """ # path = Path(path) node_file = os.path.join(path.resolve(), node_file) graph_file = os.path.join(path.resolve(), graph_file) # parsing the nodes file with open(node_file, 'r') as file: Np = sp.fromstring(file.readline().rsplit('=')[1], sep='\t', dtype=int)[0] vox_size = sp.fromstring(file.readline().rsplit(')')[1], sep='\t',)[0] # network always recreated to prevent errors network = GenericNetwork(Np=Np, Nt=0) # Define expected properies network['pore.volume'] = sp.nan scrap_lines = [file.readline() for line in range(4)] while True: vals = file.readline().split('\t') if len(vals) == 1: break network['pore.volume'][int(vals[0])] = float(vals[3]) if 'pore.'+vals[2] not in network.labels(): network['pore.'+vals[2]] = False network['pore.'+vals[2]][int(vals[0])] = True if voxel_size is None: voxel_size = vox_size * 1.0E-6 # file stores value in microns if voxel_size < 0: raise(Exception('Error - Voxel size must be specfied in ' + 'the Nodes file or as a keyword argument.')) # parsing the graph file with open(graph_file, 'r') as file: # Define expected properties network['pore.coords'] = sp.zeros((Np, 3))*sp.nan network['pore.types'] = sp.nan network['pore.color'] = sp.nan network['pore.radius'] = sp.nan network['pore.dmax'] = sp.nan network['pore.node_number'] = sp.nan # Scan file to get pore coordinate data scrap_lines = [file.readline() for line in range(3)] line = file.readline() xmax = 0.0 ymax = 0.0 zmax = 0.0 node_num = 0 while line != 'connectivity table\n': vals = sp.fromstring(line, sep='\t') xmax = vals[1] if vals[1] > xmax else xmax ymax = vals[2] if vals[2] > ymax else ymax zmax = vals[3] if vals[3] > zmax else zmax network['pore.coords'][int(vals[0]), :] = vals[1:4] network['pore.types'][int(vals[0])] = vals[4] network['pore.color'][int(vals[0])] = vals[5] network['pore.radius'][int(vals[0])] = vals[6] network['pore.dmax'][int(vals[0])] = vals[7] network['pore.node_number'][int(vals[0])] = node_num node_num += 1 line = file.readline() # Scan file to get to connectivity data scrap_lines.append(file.readline()) # Skip line # Create sparse lil array incrementally build adjacency matrix lil = sp.sparse.lil_matrix((Np, Np), dtype=int) while True: vals = sp.fromstring(file.readline(), sep='\t', dtype=int) if len(vals) <= 1: break lil.rows[vals[0]] = vals[2:] lil.data[vals[0]] = sp.ones(vals[1]) # fixing any negative volumes or distances so they are 1 voxel/micron network['pore.volume'][sp.where(network['pore.volume'] < 0)[0]] = 1.0 network['pore.radius'][sp.where(network['pore.radius'] < 0)[0]] = 1.0 network['pore.dmax'][sp.where(network['pore.dmax'] < 0)[0]] = 1.0 # Add adjacency matrix to OpenPNM network conns = sp.sparse.triu(lil, k=1, format='coo') network.update({'throat.all': sp.ones(len(conns.col), dtype=bool)}) network['throat.conns'] = sp.vstack([conns.row, conns.col]).T network['pore.to_trim'] = False network['pore.to_trim'][network.pores('*throat')] = True Ts = network.pores('to_trim') new_conns = network.find_neighbor_pores(pores=Ts, flatten=False) extend(network=network, throat_conns=new_conns, labels='new_conns') for item in network.props('pore'): item = item.split('.')[1] arr = sp.ones_like(network['pore.'+item])[0] arr = sp.tile(A=arr, reps=[network.Nt, 1])*sp.nan network['throat.'+item] = sp.squeeze(arr) network['throat.'+item][network.throats('new_conns')] = \ network['pore.'+item][Ts] trim(network=network, pores=Ts) # setting up boundary pores x_coord, y_coord, z_coord = sp.hsplit(network['pore.coords'], 3) network['pore.front_boundary'] = sp.ravel(x_coord == 0) network['pore.back_boundary'] = sp.ravel(x_coord == xmax) network['pore.left_boundary'] = sp.ravel(y_coord == 0) network['pore.right_boundary'] = sp.ravel(y_coord == ymax) network['pore.bottom_boundary'] = sp.ravel(z_coord == 0) network['pore.top_boundary'] = sp.ravel(z_coord == zmax) # removing any pores that got classified as a boundary pore but # weren't labled a border_cell_face ps = sp.where(~sp.in1d(network.pores('*_boundary'), network.pores('border_cell_face')))[0] ps = network.pores('*_boundary')[ps] for side in ['front', 'back', 'left', 'right', 'top', 'bottom']: network['pore.'+side+'_boundary'][ps] = False # setting internal label network['pore.internal'] = False network['pore.internal'][network.pores('*_boundary', mode='not')] = True # adding props to border cell face throats and from pores Ts = sp.where(network['throat.conns'][:, 1] > network.pores('border_cell_face')[0] - 1)[0] faces = network['throat.conns'][Ts, 1] for item in network.props('pore'): item = item.split('.')[1] network['throat.'+item][Ts] = network['pore.'+item][faces] network['pore.volume'][faces] = 0.0 # applying unit conversions # TODO: Determine if radius and dmax are indeed microns and not voxels network['pore.coords'] = network['pore.coords'] * 1e-6 network['pore.radius'] = network['pore.radius'] * 1e-6 network['pore.dmax'] = network['pore.dmax'] * 1e-6 network['pore.volume'] = network['pore.volume'] * voxel_size**3 network['throat.coords'] = network['throat.coords'] * 1e-6 network['throat.radius'] = network['throat.radius'] * 1e-6 network['throat.dmax'] = network['throat.dmax'] * 1e-6 network['throat.volume'] = network['throat.volume'] * voxel_size**3 return network.project