Пример #1
0
    def test_mag_dist_outside_range(self):
        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        # rupture with Mw = 3 (Mblg=2.9434938048208452) at rhypo = 1 must give
        # same mean as rupture with Mw = 4.4 (Mblg=4.8927897867183798) at
        # rhypo = 10
        rctx.mag = 2.9434938048208452
        dctx.rhypo = numpy.array([1])
        mean_mw3_d1, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])

        rctx.mag = 4.8927897867183798
        dctx.rhypo = numpy.array([10])
        mean_mw4pt4_d10, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])

        self.assertAlmostEqual(float(mean_mw3_d1), float(mean_mw4pt4_d10))

        # rupture with Mw = 9 (Mblg = 8.2093636421088814) at rhypo = 1500 km
        # must give same mean as rupture with Mw = 8.2
        # (Mblg = 7.752253535347597) at rhypo = 1000
        rctx.mag = 8.2093636421088814
        dctx.rhypo = numpy.array([1500.])
        mean_mw9_d1500, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])

        rctx.mag = 7.752253535347597
        dctx.rhypo = numpy.array([1000.])
        mean_mw8pt2_d1000, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])

        self.assertAlmostEqual(mean_mw9_d1500, mean_mw8pt2_d1000)
Пример #2
0
    def test_dist_not_in_increasing_order(self):
        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        rctx.mag = 5.
        dctx.rhypo = numpy.array([150, 100])
        mean_150_100, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])

        dctx.rhypo = numpy.array([100, 150])
        mean_100_150, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL])
        self.assertAlmostEqual(mean_150_100[1], mean_100_150[0])
        self.assertAlmostEqual(mean_150_100[0], mean_100_150[1])
Пример #3
0
def evaluate_model(site_params, rup_params, df, npts, azimuth, moveout, mod,
                   imt):
    sx = SitesContext()
    rx = RuptureContext()
    dx = DistancesContext()

    # TODO: some site parameters can be pulled from the dataframe so we don't
    # have to use the defaults (vs30, azimuth, etc.)
    if not moveout:
        npts = df.shape[0]
    for param in site_params.keys():
        setattr(sx, param, np.full(npts, site_params[param]))

    rx.__dict__.update(rup_params)
    rx.mag = df['EarthquakeMagnitude'].iloc[0]
    rx.hypo_depth = df['EarthquakeDepth'].iloc[0]

    if moveout:
        dx.rjb = np.linspace(0, df['JoynerBooreDistance'].max(), npts)
        dx.rrup = np.sqrt(dx.rjb**2 + df['EarthquakeDepth'].iloc[0]**2)
        dx.rhypo = dx.rrup
        dx.repi = dx.rjb
    else:
        dx.rjb = df['JoynerBooreDistance']
        dx.rrup = df['RuptureDistance']
        dx.rhypo = df['HypocentralDistance']
        dx.repi = df['EpicentralDistance']

    # TODO: some of these distances can be pulled from the dataframe
    dx.ry0 = dx.rjb
    dx.rx = np.full_like(dx.rjb, -1)
    dx.azimuth = np.full_like(npts, azimuth)
    dx.rcdpp = dx.rjb
    dx.rvolc = dx.rjb

    try:
        mean, sd = MODELS_DICT[mod]().get_mean_and_stddevs(
            sx, rx, dx,
            manage_imts(imt)[0], [StdDev.TOTAL])
        mean = convert_units(mean, imt)
        if moveout:
            return mean, dx
        else:
            return mean, sd[0]
    except Exception:
        return
    def test_dist_not_in_increasing_order(self):
        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        rctx.mag = 5.
        dctx.rhypo = numpy.array([150, 100])
        mean_150_100, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        dctx.rhypo = numpy.array([100, 150])
        mean_100_150, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )
        self.assertAlmostEqual(mean_150_100[1], mean_100_150[0])
        self.assertAlmostEqual(mean_150_100[0], mean_100_150[1])
    def test_mag_dist_outside_range(self):
        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        # rupture with Mw = 3 (Mblg=2.9434938048208452) at rhypo = 1 must give
        # same mean as rupture with Mw = 4.4 (Mblg=4.8927897867183798) at
        # rhypo = 10
        rctx.mag = 2.9434938048208452
        dctx.rhypo = numpy.array([1])
        mean_mw3_d1, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        rctx.mag = 4.8927897867183798
        dctx.rhypo = numpy.array([10])
        mean_mw4pt4_d10, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        self.assertAlmostEqual(float(mean_mw3_d1), float(mean_mw4pt4_d10))

        # rupture with Mw = 9 (Mblg = 8.2093636421088814) at rhypo = 1500 km
        # must give same mean as rupture with Mw = 8.2
        # (Mblg = 7.752253535347597) at rhypo = 1000
        rctx.mag = 8.2093636421088814
        dctx.rhypo = numpy.array([1500.])
        mean_mw9_d1500, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        rctx.mag = 7.752253535347597
        dctx.rhypo = numpy.array([1000.])
        mean_mw8pt2_d1000, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        self.assertAlmostEqual(mean_mw9_d1500, mean_mw8pt2_d1000)
 def test_rhypo_smaller_than_15(self):
     # test the calculation in case of rhypo distances less than 15 km
     # (for rhypo=0 the distance term has a singularity). In this case the
     # method should return values equal to the ones obtained by clipping
     # distances at 15 km.
     sctx = SitesContext()
     sctx.vs30 = numpy.array([800.0, 800.0, 800.0])
     rctx = RuptureContext()
     rctx.mag = 5.0
     rctx.rake = 0
     dctx = DistancesContext()
     dctx.rhypo = numpy.array([0.0, 10.0, 16.0])
     dctx.rhypo.flags.writeable = False
     mean_0, stds_0 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     setattr(dctx, 'rhypo', numpy.array([15.0, 15.0, 16.0]))
     mean_15, stds_15 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     numpy.testing.assert_array_equal(mean_0, mean_15)
     numpy.testing.assert_array_equal(stds_0, stds_15)
 def test_rhypo_smaller_than_15(self):
     # test the calculation in case of rhypo distances less than 15 km
     # (for rhypo=0 the distance term has a singularity). In this case the
     # method should return values equal to the ones obtained by clipping
     # distances at 15 km.
     sctx = SitesContext()
     sctx.vs30 = numpy.array([800.0, 800.0, 800.0])
     rctx = RuptureContext()
     rctx.mag = 5.0
     rctx.rake = 0
     dctx = DistancesContext()
     dctx.rhypo = numpy.array([0.0, 10.0, 16.0])
     dctx.rhypo.flags.writeable = False
     mean_0, stds_0 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     setattr(dctx, 'rhypo', numpy.array([15.0, 15.0, 16.0]))
     mean_15, stds_15 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     numpy.testing.assert_array_equal(mean_0, mean_15)
     numpy.testing.assert_array_equal(stds_0, stds_15)
Пример #8
0
rctx.rake = 0.0
rctx.dip = 90.0
rctx.ztor = 7.13
rctx.mag = 3.0
#rctx.mag = np.linspace(0.1,5.)
rctx.width = 10.0
rctx.hypo_depth = 8.0

#dctx.rrup = np.logspace(1,np.log10(200),100)
dctx.rrup = np.logspace(np.log10(10),np.log10(10.0),1)


# Assuming average ztor, get rjb:
dctx.rjb = np.sqrt(dctx.rrup**2 - rctx.ztor**2)
dctx.rhypo = dctx.rrup
dctx.rx = dctx.rjb
dctx.ry0 = dctx.rx

sctx.vs30 = np.ones_like(dctx.rrup) * 760.0
sctx.vs30measured = np.full_like(dctx.rrup, False, dtype='bool')
sctx.z1pt0 = np.ones_like(dctx.rrup) * 0.05

lmean_ask14, sd_ask14 = ASK14.get_mean_and_stddevs(
    sctx, rctx, dctx, IMT, [const.StdDev.TOTAL])





###############################################################################
def trim_multiple_events(st, origin, catalog, travel_time_df, pga_factor,
                         pct_window_reject, gmpe, site_parameters,
                         rupture_parameters):
    """
    Uses a catalog (list of ScalarEvents) to handle cases where a trace might
    contain signals from multiple events. The catalog should contain events
    down to a low enough magnitude in relation to the events of interest.
    Overall, the algorithm is as follows:

    1) For each earthquake in the catalog, get the P-wave travel time
       and estimated PGA at this station.

    2) Compute the PGA (of the as-recorded horizontal channels).

    3) Select the P-wave arrival times across all events for this record
       that are (a) within the signal window, and (b) the predicted PGA is
       greater than pga_factor times the PGA from step #1.

    4) If any P-wave arrival times match the above criteria, then if any of
       the arrival times fall within in the first pct_window_reject*100%
       of the signal window, then reject the record. Otherwise, trim the
       record such that the end time does not include any of the arrivals
       selected in step #3.

    Args:
        st (StationStream): Stream of data.
        origin (ScalarEvent): ScalarEvent object associated with the StationStream.
        catalog (list): List of ScalarEvent objects.
        travel_time_df (DataFrame): A pandas DataFrame that contains the travel time information
            (obtained from gmprocess.waveform_processing.phase.create_travel_time_dataframe).
            The columns in the DataFrame are the station ids and the indices
            are the earthquake ids.
        pga_factor (float): A decimal factor used to determine whether the predicted PGA
            from an event arrival is significant enough that it should be
            considered for removal.
        pct_window_reject (float): A decimal from 0.0 to 1.0 used to determine if an arrival should
            be trimmed from the record, or if the entire record should be
            rejected. If the arrival falls within the first
            pct_window_reject * 100% of the signal window, then the entire
            record will be rejected. Otherwise, the record will be trimmed
            appropriately.
        gmpe (str): Short name of the GMPE to use. Must be defined in the modules file.
        site_parameters (dict): Dictionary of site parameters to input to the GMPE.
        rupture_parameters: Dictionary of rupture parameters to input to the GMPE.

    Returns:
        StationStream: Processed stream.

    """

    if not st.passed:
        return st

    # Check that we know the signal split for each trace in the stream
    for tr in st:
        if not tr.hasParameter('signal_split'):
            return st

    signal_window_starttime = st[0].getParameter('signal_split')['split_time']

    arrivals = travel_time_df[st[0].stats.network + '.' + st[0].stats.station]
    arrivals = arrivals.sort_values()

    # Filter by any arrival times that appear in the signal window
    arrivals = arrivals[
        (arrivals > signal_window_starttime) &
        (arrivals < st[0].stats.endtime)]

    # Make sure we remove the arrival that corresponds to the event of interest
    if origin.id in arrivals.index:
        arrivals.drop(index=origin.id, inplace=True)

    if arrivals.empty:
        return st

    # Calculate the recorded PGA for this record
    stasum = StationSummary.from_stream(st, ['ROTD(50.0)'], ['PGA'])
    recorded_pga = stasum.get_pgm('PGA', 'ROTD(50.0)')

    # Load the GMPE model
    gmpe = load_model(gmpe)

    # Set site parameters
    sx = SitesContext()

    # Make sure that site parameter values are converted to numpy arrays
    site_parameters_copy = site_parameters.copy()
    for k, v in site_parameters_copy.items():
        site_parameters_copy[k] = np.array([site_parameters_copy[k]])
    sx.__dict__.update(site_parameters_copy)

    # Filter by arrivals that have significant expected PGA using GMPE
    is_significant = []
    for eqid, arrival_time in arrivals.items():
        event = next(event for event in catalog if event.id == eqid)

        # Set rupture parameters
        rx = RuptureContext()
        rx.__dict__.update(rupture_parameters)
        rx.mag = event.magnitude

        # TODO: distances should be calculated when we refactor to be
        # able to import distance calculations
        dx = DistancesContext()
        dx.repi = np.array([
            gps2dist_azimuth(
                st[0].stats.coordinates.latitude,
                st[0].stats.coordinates.longitude,
                event.latitude, event.longitude)[0] / 1000])
        dx.rjb = dx.repi
        dx.rhypo = np.sqrt(dx.repi**2 + event.depth_km**2)
        dx.rrup = dx.rhypo

        pga, sd = gmpe.get_mean_and_stddevs(sx, rx, dx, imt.PGA(), [])

        # Convert from ln(g) to %g
        predicted_pga = 100 * np.exp(pga[0])
        if predicted_pga > (pga_factor * recorded_pga):
            is_significant.append(True)
        else:
            is_significant.append(False)

    significant_arrivals = arrivals[is_significant]
    if significant_arrivals.empty:
        return st

    # Check if any of the significant arrivals occur within the
    signal_length = st[0].stats.endtime - signal_window_starttime
    cutoff_time = signal_window_starttime + pct_window_reject * (signal_length)
    if (significant_arrivals < cutoff_time).any():
        for tr in st:
            tr.fail('A significant arrival from another event occurs within '
                    'the first %s percent of the signal window' %
                    (100 * pct_window_reject))

    # Otherwise, trim the stream at the first significant arrival
    else:
        for tr in st:
            signal_end = tr.getParameter('signal_end')
            signal_end['end_time'] = significant_arrivals[0]
            signal_end['method'] = ('Trimming before right another event')
            tr.setParameter('signal_end', signal_end)
        cut(st)

    return st
Пример #10
0
def get_extent(rupture=None, config=None):
    """
    Method to compute map extent from rupture. There are numerous methods for
    getting the extent:
        - It can be specified directly in the config file,
        - it can be hard coded for specific magnitude ranges in the config
          file, or
        - it can be based on the MultiGMPE for the event.

    All methods except for the first requires a rupture object.

    If no config is provided then a rupture is required and the extent is based
    on a generic set of active/stable.

    Args:
        rupture (Rupture): A ShakeMap Rupture instance.
        config (ConfigObj): ShakeMap config object.

    Returns:
        tuple: lonmin, lonmax, latmin, latmax rounded to the nearest
        arc-minute..

    """

    # -------------------------------------------------------------------------
    # Check to see what parameters are specified in the extent config
    # -------------------------------------------------------------------------
    spans = {}
    bounds = []
    if config is not None:
        if 'extent' in config:
            if 'magnitude_spans' in config['extent']:
                if len(config['extent']['magnitude_spans']):
                    if isinstance(config['extent']['magnitude_spans'], dict):
                        spans = config['extent']['magnitude_spans']
            if 'bounds' in config['extent']:
                if 'extent' in config['extent']['bounds']:
                    if config['extent']['bounds']['extent'][0] != -999.0:
                        bounds = config['extent']['bounds']['extent']

    # -------------------------------------------------------------------------
    # Simplest option: extent was specified in the config, use that and exit.
    # -------------------------------------------------------------------------
    if len(bounds):
        xmin, ymin, xmax, ymax = bounds
        return (xmin, xmax, ymin, ymax)

    if not rupture or not isinstance(rupture, Rupture):
        raise TypeError('get_extent() requires a rupture object if the extent '
                        'is not specified in the config object.')

    # Find the central point
    origin = rupture.getOrigin()
    if isinstance(rupture, (QuadRupture, EdgeRupture)):
        # For an extended rupture, it is the midpoint between the extent of the
        # verticies
        lats = rupture.lats
        lons = rupture.lons

        # Remove nans
        lons = lons[~np.isnan(lons)]
        lats = lats[~np.isnan(lats)]

        clat = 0.5 * (np.nanmax(lats) + np.nanmin(lats))
        clon = 0.5 * (np.nanmax(lons) + np.nanmin(lons))
    else:
        # For a point source, it is just the epicenter
        clat = origin.lat
        clon = origin.lon

    mag = origin.mag

    # -------------------------------------------------------------------------
    # Second simplest option: spans are hardcoded based on magnitude
    # -------------------------------------------------------------------------
    if len(spans):
        xmin = None
        xmax = None
        ymin = None
        ymax = None
        for spankey, span in spans.items():
            if mag > span[0] and mag <= span[1]:
                ymin = clat - span[2] / 2
                ymax = clat + span[2] / 2
                xmin = clon - span[3] / 2
                xmax = clon + span[3] / 2
                break
        if xmin is not None:
            return (xmin, xmax, ymin, ymax)

    # -------------------------------------------------------------------------
    # Use MultiGMPE to get spans
    # -------------------------------------------------------------------------
    if config is not None:
        gmpe = MultiGMPE.from_config(config)
        gmice = get_object_from_config('gmice', 'modeling', config)
    else:
        # Put in some default values for conf
        config = {
            'extent': {
                'mmi': {
                    'threshold': 4.5,
                    'mindist': 100,
                    'maxdist': 1000
                }
            }
        }

        # Generic GMPEs choices based only on active vs stable
        # as defaults...
        stable = is_stable(origin.lon, origin.lat)
        if not stable:
            ASK14 = AbrahamsonEtAl2014()
            CB14 = CampbellBozorgnia2014()
            CY14 = ChiouYoungs2014()
            gmpes = [ASK14, CB14, CY14]
            site_gmpes = None
            weights = [1 / 3.0, 1 / 3.0, 1 / 3.0]
            gmice = WGRW12()
        else:
            Fea96 = FrankelEtAl1996MwNSHMP2008()
            Tea97 = ToroEtAl1997MwNSHMP2008()
            Sea02 = SilvaEtAl2002MwNSHMP2008()
            C03 = Campbell2003MwNSHMP2008()
            TP05 = TavakoliPezeshk2005MwNSHMP2008()
            AB06p = AtkinsonBoore2006Modified2011()
            Pea11 = PezeshkEtAl2011()
            Atk08p = Atkinson2008prime()
            Sea01 = SomervilleEtAl2001NSHMP2008()
            gmpes = [
                Fea96, Tea97, Sea02, C03, TP05, AB06p, Pea11, Atk08p, Sea01
            ]
            site_gmpes = [AB06p]
            weights = [0.16, 0.0, 0.0, 0.17, 0.17, 0.3, 0.2, 0.0, 0.0]
            gmice = AK07()

        gmpe = MultiGMPE.from_list(gmpes,
                                   weights,
                                   default_gmpes_for_site=site_gmpes)

    min_mmi = config['extent']['mmi']['threshold']
    default_imt = imt.SA(1.0)
    sd_types = [const.StdDev.TOTAL]

    # Distance context
    dx = DistancesContext()
    # This imposes minimum/ maximum distances of:
    #   80 and 800 km; could make this configurable
    d_min = config['extent']['mmi']['mindist']
    d_max = config['extent']['mmi']['maxdist']
    dx.rjb = np.logspace(np.log10(d_min), np.log10(d_max), 2000)
    # Details don't matter for this; assuming vertical surface rupturing fault
    # with epicenter at the surface.
    dx.rrup = dx.rjb
    dx.rhypo = dx.rjb
    dx.repi = dx.rjb
    dx.rx = np.zeros_like(dx.rjb)
    dx.ry0 = np.zeros_like(dx.rjb)
    dx.rvolc = np.zeros_like(dx.rjb)

    # Sites context
    sx = SitesContext()
    # Set to soft soil conditions
    sx.vs30 = np.full_like(dx.rjb, 180)
    sx = MultiGMPE.set_sites_depth_parameters(sx, gmpe)
    sx.vs30measured = np.full_like(sx.vs30, False, dtype=bool)
    sx = Sites._addDepthParameters(sx)
    sx.backarc = np.full_like(sx.vs30, False, dtype=bool)

    # Rupture context
    rx = RuptureContext()
    rx.mag = origin.mag
    rx.rake = 0.0
    # From WC94...
    rx.width = 10**(-0.76 + 0.27 * rx.mag)
    rx.dip = 90.0
    rx.ztor = origin.depth
    rx.hypo_depth = origin.depth

    gmpe_imt_mean, _ = gmpe.get_mean_and_stddevs(sx, rx, dx, default_imt,
                                                 sd_types)

    # Convert to MMI
    gmpe_to_mmi, _ = gmice.getMIfromGM(gmpe_imt_mean, default_imt)

    # Minimum distance that exceeds threshold MMI?
    dists_exceed_mmi = dx.rjb[gmpe_to_mmi > min_mmi]
    if len(dists_exceed_mmi):
        mindist_km = np.max(dists_exceed_mmi)
    else:
        mindist_km = d_min

    # Get a projection
    proj = OrthographicProjection(clon - 4, clon + 4, clat + 4, clat - 4)
    if isinstance(rupture, (QuadRupture, EdgeRupture)):
        ruptx, rupty = proj(lons, lats)
    else:
        ruptx, rupty = proj(clon, clat)

    xmin = np.nanmin(ruptx) - mindist_km
    ymin = np.nanmin(rupty) - mindist_km
    xmax = np.nanmax(ruptx) + mindist_km
    ymax = np.nanmax(rupty) + mindist_km

    # Put a limit on range of aspect ratio
    dx = xmax - xmin
    dy = ymax - ymin
    ar = dy / dx
    if ar > 1.2:
        # Inflate x
        dx_target = dy / 1.2
        ddx = dx_target - dx
        xmax = xmax + ddx / 2
        xmin = xmin - ddx / 2
    if ar < 0.83:
        # Inflate y
        dy_target = dx * 0.83
        ddy = dy_target - dy
        ymax = ymax + ddy / 2
        ymin = ymin - ddy / 2

    lonmin, latmin = proj(np.array([xmin]), np.array([ymin]), reverse=True)
    lonmax, latmax = proj(np.array([xmax]), np.array([ymax]), reverse=True)

    #
    # Round coordinates to the nearest minute -- that should make the
    # output grid register with common grid resolutions (60c, 30c,
    # 15c, 7.5c)
    #
    logging.debug("Extent: %f, %f, %f, %f" % (lonmin, lonmax, latmin, latmax))
    return _round_coord(lonmin[0]), _round_coord(lonmax[0]), \
        _round_coord(latmin[0]), _round_coord(latmax[0])
Пример #11
0
def _get_extent_from_multigmpe(rupture, config=None):
    """
    Use MultiGMPE to determine extent
    """
    (clon, clat) = _rupture_center(rupture)
    origin = rupture.getOrigin()
    if config is not None:
        gmpe = MultiGMPE.from_config(config)
        gmice = get_object_from_config('gmice', 'modeling', config)
        if imt.SA in gmice.DEFINED_FOR_INTENSITY_MEASURE_TYPES:
            default_imt = imt.SA(1.0)
        elif imt.PGV in gmice.DEFINED_FOR_INTENSITY_MEASURE_TYPES:
            default_imt = imt.PGV()
        else:
            default_imt = imt.PGA()
    else:
        # Put in some default values for conf
        config = {
            'extent': {
                'mmi': {
                    'threshold': 4.5,
                    'mindist': 100,
                    'maxdist': 1000
                }
            }
        }

        # Generic GMPEs choices based only on active vs stable
        # as defaults...
        stable = is_stable(origin.lon, origin.lat)
        if not stable:
            ASK14 = AbrahamsonEtAl2014()
            CB14 = CampbellBozorgnia2014()
            CY14 = ChiouYoungs2014()
            gmpes = [ASK14, CB14, CY14]
            site_gmpes = None
            weights = [1/3.0, 1/3.0, 1/3.0]
            gmice = WGRW12()
        else:
            Fea96 = FrankelEtAl1996MwNSHMP2008()
            Tea97 = ToroEtAl1997MwNSHMP2008()
            Sea02 = SilvaEtAl2002MwNSHMP2008()
            C03 = Campbell2003MwNSHMP2008()
            TP05 = TavakoliPezeshk2005MwNSHMP2008()
            AB06p = AtkinsonBoore2006Modified2011()
            Pea11 = PezeshkEtAl2011()
            Atk08p = Atkinson2008prime()
            Sea01 = SomervilleEtAl2001NSHMP2008()
            gmpes = [Fea96, Tea97, Sea02, C03,
                     TP05, AB06p, Pea11, Atk08p, Sea01]
            site_gmpes = [AB06p]
            weights = [0.16, 0.0, 0.0, 0.17, 0.17, 0.3, 0.2, 0.0, 0.0]
            gmice = AK07()

        gmpe = MultiGMPE.from_list(
            gmpes, weights, default_gmpes_for_site=site_gmpes)
        default_imt = imt.SA(1.0)

    min_mmi = config['extent']['mmi']['threshold']
    sd_types = [const.StdDev.TOTAL]

    # Distance context
    dx = DistancesContext()
    # This imposes minimum/ maximum distances of:
    #   80 and 800 km; could make this configurable
    d_min = config['extent']['mmi']['mindist']
    d_max = config['extent']['mmi']['maxdist']
    dx.rjb = np.logspace(np.log10(d_min), np.log10(d_max), 2000)
    # Details don't matter for this; assuming vertical surface rupturing fault
    # with epicenter at the surface.
    dx.rrup = dx.rjb
    dx.rhypo = dx.rjb
    dx.repi = dx.rjb
    dx.rx = np.zeros_like(dx.rjb)
    dx.ry0 = np.zeros_like(dx.rjb)
    dx.rvolc = np.zeros_like(dx.rjb)

    # Sites context
    sx = SitesContext()
    # Set to soft soil conditions
    sx.vs30 = np.full_like(dx.rjb, 180)
    sx = MultiGMPE.set_sites_depth_parameters(sx, gmpe)
    sx.vs30measured = np.full_like(sx.vs30, False, dtype=bool)
    sx = Sites._addDepthParameters(sx)
    sx.backarc = np.full_like(sx.vs30, False, dtype=bool)

    # Rupture context
    rx = RuptureContext()
    rx.mag = origin.mag
    rx.rake = 0.0
    # From WC94...
    rx.width = 10**(-0.76 + 0.27*rx.mag)
    rx.dip = 90.0
    rx.ztor = origin.depth
    rx.hypo_depth = origin.depth

    gmpe_imt_mean, _ = gmpe.get_mean_and_stddevs(
        sx, rx, dx, default_imt, sd_types)

    # Convert to MMI
    gmpe_to_mmi, _ = gmice.getMIfromGM(gmpe_imt_mean, default_imt)

    # Minimum distance that exceeds threshold MMI?
    dists_exceed_mmi = dx.rjb[gmpe_to_mmi > min_mmi]
    if len(dists_exceed_mmi):
        mindist_km = np.max(dists_exceed_mmi)
    else:
        mindist_km = d_min

    # Get a projection
    proj = OrthographicProjection(clon - 4, clon + 4, clat + 4, clat - 4)
    if isinstance(rupture, (QuadRupture, EdgeRupture)):
        ruptx, rupty = proj(
            rupture.lons[~np.isnan(rupture.lons)],
            rupture.lats[~np.isnan(rupture.lats)]
        )
    else:
        ruptx, rupty = proj(clon, clat)

    xmin = np.nanmin(ruptx) - mindist_km
    ymin = np.nanmin(rupty) - mindist_km
    xmax = np.nanmax(ruptx) + mindist_km
    ymax = np.nanmax(rupty) + mindist_km

    # Put a limit on range of aspect ratio
    dx = xmax - xmin
    dy = ymax - ymin
    ar = dy / dx
    if ar > 1.2:
        # Inflate x
        dx_target = dy / 1.2
        ddx = dx_target - dx
        xmax = xmax + ddx / 2
        xmin = xmin - ddx / 2
    if ar < 0.83:
        # Inflate y
        dy_target = dx * 0.83
        ddy = dy_target - dy
        ymax = ymax + ddy / 2
        ymin = ymin - ddy / 2

    lonmin, latmin = proj(np.array([xmin]), np.array([ymin]), reverse=True)
    lonmax, latmax = proj(np.array([xmax]), np.array([ymax]), reverse=True)

    #
    # Round coordinates to the nearest minute -- that should make the
    # output grid register with common grid resolutions (60c, 30c,
    # 15c, 7.5c)
    #
    logging.debug("Extent: %f, %f, %f, %f" %
                  (lonmin, lonmax, latmin, latmax))
    return _round_coord(lonmin[0]), _round_coord(lonmax[0]), \
        _round_coord(latmin[0]), _round_coord(latmax[0])
Пример #12
0
def test_scr_rlme():
    old_gmpe = set_gmpe('stable_continental_nshmp2014_rlme')
    spec_file = pkg_resources.resource_filename(
        'scenarios', os.path.join('data', 'configspec.conf'))
    validator = get_custom_validator()
    config = ConfigObj(os.path.join(os.path.expanduser('~'), 'scenarios.conf'),
                       configspec=spec_file)
    tmp = pkg_resources.resource_filename(
        'scenarios', os.path.join('..', 'data', 'gmpe_sets.conf'))
    config.merge(ConfigObj(tmp, configspec=spec_file))
    tmp = pkg_resources.resource_filename(
        'scenarios', os.path.join('..', 'data', 'modules.conf'))
    config.merge(ConfigObj(tmp, configspec=spec_file))
    results = config.validate(validator)
    if results != True:
        config_error(config, results)

    # MultiGMPE from config
    config = config.dict()
    gmpe = MultiGMPE.from_config(config)

    # Input stuff
    IMT = imt.SA(1.0)
    rctx = RuptureContext()
    dctx = DistancesContext()
    sctx = SitesContext()

    rctx.rake = 0.0
    rctx.dip = 90.0
    rctx.ztor = 0.0
    rctx.mag = 8.0
    rctx.width = 10.0
    rctx.hypo_depth = 8.0

    dctx.rjb = np.logspace(1, np.log10(800), 100)
    dctx.rrup = dctx.rjb
    dctx.rhypo = dctx.rjb
    dctx.rx = dctx.rjb
    dctx.ry0 = dctx.rjb

    sctx.vs30 = np.ones_like(dctx.rjb) * 275.0
    sctx.vs30measured = np.full_like(dctx.rjb, False, dtype='bool')
    sctx = MultiGMPE.set_sites_depth_parameters(sctx, gmpe)

    # Evaluate
    conf_lmean, dummy = gmpe.get_mean_and_stddevs(sctx, rctx, dctx, IMT,
                                                  [const.StdDev.TOTAL])

    target_lmean = np.array([
        0.10556736, 0.0839267, 0.06189444, 0.03945984, 0.01661264, -0.006657,
        -0.03035844, -0.05450058, -0.07909179, -0.10413995, -0.1296524,
        -0.15563655, -0.1821091, -0.20909381, -0.23661405, -0.26469259,
        -0.29335086, -0.32257956, -0.35232905, -0.38254639, -0.41317807,
        -0.44417017, -0.47549552, -0.5071888, -0.53929293, -0.57185042,
        -0.60490345, -0.63848027, -0.67255251, -0.70707712, -0.74201096,
        -0.77731091, -0.81293906, -0.84889737, -0.88520644, -0.92188724,
        -0.95899471, -0.99699613, -1.03583184, -1.07530664, -1.11531737,
        -1.15576129, -1.19653696, -1.23757689, -1.2772327, -1.2915098,
        -1.30576498, -1.32001713, -1.33429606, -1.3486727, -1.36322545,
        -1.37803346, -1.39317668, -1.40677752, -1.42081409, -1.43538898,
        -1.45056417, -1.46640223, -1.48327111, -1.50656497, -1.53368548,
        -1.56645985, -1.59991327, -1.63399401, -1.66867278, -1.7039438,
        -1.73980246, -1.77624473, -1.81326727, -1.85087166, -1.889066,
        -1.92784814, -1.96721442, -2.0071855, -2.04779304, -2.08909259,
        -2.13114448, -2.17401045, -2.21775376, -2.26243406, -2.30808979,
        -2.35475487, -2.40246494, -2.4512575, -2.50117075, -2.55223495,
        -2.60447754, -2.65792811, -2.71261851, -2.61732716, -2.67007323,
        -2.72399057, -2.77918054, -2.83574666, -2.89379416, -2.95340501,
        -3.01462691, -3.07750731, -3.14209631, -3.20844679
    ])

    np.testing.assert_allclose(conf_lmean, target_lmean, atol=1e-6)

    # Redo for 3 sec so some GMPEs are filtered out
    IMT = imt.SA(3.0)
    gmpe = MultiGMPE.from_config(config, filter_imt=IMT)
    conf_lmean, dummy = gmpe.get_mean_and_stddevs(sctx, rctx, dctx, IMT,
                                                  [const.StdDev.TOTAL])

    target_lmean = np.array([
        -1.26636973, -1.289514, -1.31300386, -1.33683936, -1.36102084,
        -1.38554902, -1.41042497, -1.43565015, -1.46122642, -1.48715602,
        -1.51344154, -1.54008586, -1.56709215, -1.59446375, -1.62220409,
        -1.65031664, -1.6788048, -1.70767178, -1.7369205, -1.76655351,
        -1.79657287, -1.82698005, -1.85777587, -1.88896039, -1.92053288,
        -1.95249175, -1.98483453, -2.01755788, -2.05065755, -2.08412844,
        -2.11796463, -2.15215943, -2.18670547, -2.22159473, -2.25681869,
        -2.29236835, -2.32823441, -2.36453464, -2.40140834, -2.43883442,
        -2.47679132, -2.51525752, -2.55421156, -2.59363211, -2.63112832,
        -2.63336521, -2.63582817, -2.6385319, -2.64147962, -2.64466761,
        -2.64809268, -2.65175214, -2.6556438, -2.65976592, -2.66411721,
        -2.66869673, -2.67350386, -2.67853821, -2.68413311, -2.69604497,
        -2.7124745, -2.73590549, -2.75964098, -2.78367044, -2.80798539,
        -2.8325853, -2.85746998, -2.88263948, -2.90809408, -2.93383429,
        -2.95986073, -2.98617306, -3.01275705, -3.03961495, -3.06675608,
        -3.09419043, -3.12192861, -3.14998191, -3.17836228, -3.20708239,
        -3.23615561, -3.26559604, -3.29541858, -3.32563888, -3.35627343,
        -3.38733956, -3.41885548, -3.4508403, -3.48331409, -3.56476842,
        -3.59987076, -3.63573296, -3.67238872, -3.70987332, -3.74822369,
        -3.78747847, -3.82767809, -3.86886488, -3.91108308, -3.95437899
    ])

    np.testing.assert_allclose(conf_lmean, target_lmean, atol=1e-6)

    # Clean up
    set_gmpe(old_gmpe)