def main(): args = parse_args() cfg = Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # update configs according to CLI args if args.work_dir is not None: cfg.work_dir = args.work_dir if args.resume_from is not None: cfg.resume_from = args.resume_from cfg.gpus = args.gpus # my if args.imgs_per_gpu is not None: cfg.data.imgs_per_gpu = args.imgs_per_gpu if args.val_imgs_per_gpu is not None: cfg.custom_hooks[0].imgs_per_gpu = args.val_imgs_per_gpu # # check memcached package exists if importlib.util.find_spec('mc') is None: traverse_replace(cfg, 'memcached', False) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False assert cfg.model.type not in \ ['DeepCluster', 'MOCO', 'SimCLR', 'ODC', 'NPID'], \ "{} does not support non-dist training.".format(cfg.model.type) else: distributed = True if args.launcher == 'slurm': cfg.dist_params['port'] = args.port init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, 'train_{}.log'.format(timestamp)) logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([('{}: {}'.format(k, v)) for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info('Distributed training: {}'.format(distributed)) logger.info('Config:\n{}'.format(cfg.text)) # set random seeds if args.seed is not None: logger.info('Set random seed to {}, deterministic: {}'.format( args.seed, args.deterministic)) set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed if args.pretrained is not None: assert isinstance(args.pretrained, str) cfg.model.pretrained = args.pretrained model = build_model(cfg.model) datasets = [build_dataset(cfg.data.train)] assert len(cfg.workflow) == 1, "Validation is called by hook." if cfg.checkpoint_config is not None: # save openselfsup version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict(openselfsup_version=__version__, config=cfg.text) # add an attribute for visualization convenience train_model(model, datasets, cfg, distributed=distributed, timestamp=timestamp, meta=meta)
def main(): print(f"Using num gpus: {torch.cuda.device_count()}") args = parse_args() cfg = Config.fromfile(args.config) if args.local_rank == 0: wandb.init(config=cfg.model) wandb.config.update(cfg.data) wandb.config.update( {"pipelines": ','.join([p.type for p in cfg.data.train.pipeline])}) wandb.config.update({"epochs": cfg.total_epochs}) wandb.config.update({"dataset_size": cfg.dataset_size}) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # update configs according to CLI args if wandb.run is not None: # save to wandb run dir for tracking and saving the models cfg.work_dir = wandb.run.dir elif args.work_dir is not None: cfg.work_dir = args.work_dir if args.resume_from is not None: cfg.resume_from = args.resume_from cfg.gpus = args.gpus # check memcached package exists if importlib.util.find_spec('mc') is None: traverse_replace(cfg, 'memcached', False) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False if not args.debug: assert cfg.model.type not in \ ['DeepCluster', 'MOCO', 'SimCLR', 'ODC', 'NPID'], \ "{} does not support non-dist training unless debugging (use --debug flag).".format( cfg.model.type) else: distributed = True if args.launcher == 'slurm': cfg.dist_params['port'] = args.port init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, 'train_{}.log'.format(timestamp)) logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([('{}: {}'.format(k, v)) for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info('Distributed training: {}'.format(distributed)) logger.info('Config:\n{}'.format(cfg.text)) # set random seeds if args.seed is not None: logger.info('Set random seed to {}, deterministic: {}'.format( args.seed, args.deterministic)) set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed if args.pretrained is not None: assert isinstance(args.pretrained, str) cfg.model.pretrained = args.pretrained model = build_model(cfg.model) if args.local_rank == 0: print(model) if args.debug: logger.info( "DEBUGGING enabled, setting batch size to 64 to allow 1 gpu debugging" ) cfg.data.batch_size = 64 model.set_debug() datasets = [build_dataset(cfg.data.train)] assert len(cfg.workflow) == 1, "Validation is called by hook." if cfg.checkpoint_config is not None: # save openselfsup version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict(openselfsup_version=__version__, config=cfg.text) if args.local_rank == 0: wandb.watch(model) # add an attribute for visualization convenience train_model(model, datasets, cfg, distributed=distributed, timestamp=timestamp, meta=meta, debug=args.debug)