def solveMocoInverse(): #Construct the MocoInverse tool. inverse = osim.MocoInverse() inverse.setName('inverseTorqueTracking') #Construct a ModelProcessor and set it on the tool. The muscles are removed #and reserve actuators added to generate a torque driven solution modelProcessor = osim.ModelProcessor('scaledModelMuscle.osim') modelProcessor.append(osim.ModOpAddExternalLoads('Jog05_grf.xml')) modelProcessor.append(osim.ModOpRemoveMuscles()) modelProcessor.append(osim.ModOpAddReserves(300)) inverse.setModel(modelProcessor) #Construct a TableProcessor of the coordinate data and pass it to the #inverse tool. TableProcessors can be used in the same way as #ModelProcessors by appending TableOperators to modify the base table. #A TableProcessor with no operators, as we have here, simply returns the #base table. inverse.setKinematics(osim.TableProcessor('ikResults_states.sto')) # Initial time, final time, and mesh interval. inverse.set_initial_time(osim.Storage('ikResults_states.sto').getFirstTime()) inverse.set_final_time(osim.Storage('ikResults_states.sto').getLastTime()) inverse.set_mesh_interval(0.02) # By default, Moco gives an error if the kinematics contains extra columns. # Here, we tell Moco to allow (and ignore) those extra columns. inverse.set_kinematics_allow_extra_columns(True) # Solve the problem and write the solution to a Storage file. solution = inverse.solve() #Return the solution as an object that we can use return solution
def create_inverse(self, root_dir, modelProcessor, mesh_interval): coordinates = osim.TableProcessor( os.path.join(root_dir, "resources/Rajagopal2016/coordinates.mot")) coordinates.append(osim.TabOpLowPassFilter(6)) coordinates.append(osim.TabOpUseAbsoluteStateNames()) inverse = osim.MocoInverse() inverse.setModel(modelProcessor) inverse.setKinematics(coordinates) inverse.set_initial_time(self.initial_time) inverse.set_final_time(self.final_time) inverse.set_mesh_interval(mesh_interval) inverse.set_kinematics_allow_extra_columns(True) inverse.set_convergence_tolerance(1e-2) # TODO inverse.set_mesh_interval(mesh_interval) return inverse
def solveMocoInverse(): # Construct the MocoInverse tool. inverse = osim.MocoInverse() # Construct a ModelProcessor and set it on the tool. The default # muscles in the model are replaced with optimization-friendly # DeGrooteFregly2016Muscles, and adjustments are made to the default muscle # parameters. modelProcessor = osim.ModelProcessor('subject_walk_armless.osim') modelProcessor.append(osim.ModOpAddExternalLoads('grf_walk.xml')) modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) modelProcessor.append(osim.ModOpReplaceMusclesWithDeGrooteFregly2016()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) modelProcessor.append(osim.ModOpAddReserves(1.0)) inverse.setModel(modelProcessor) # Construct a TableProcessor of the coordinate data and pass it to the # inverse tool. TableProcessors can be used in the same way as # ModelProcessors by appending TableOperators to modify the base table. # A TableProcessor with no operators, as we have here, simply returns the # base table. inverse.setKinematics(osim.TableProcessor('coordinates.sto')) # Initial time, final time, and mesh interval. inverse.set_initial_time(0.81) inverse.set_final_time(1.79) inverse.set_mesh_interval(0.02) # By default, Moco gives an error if the kinematics contains extra columns. # Here, we tell Moco to allow (and ignore) those extra columns. inverse.set_kinematics_allow_extra_columns(True) # Solve the problem and write the solution to a Storage file. solution = inverse.solve() solution.getMocoSolution().write( 'example3DWalking_MocoInverse_solution.sto') # Generate a PDF with plots for the solution trajectory. model = modelProcessor.process() report = osim.report.Report(model, 'example3DWalking_MocoInverse_solution.sto', bilateral=True) # The PDF is saved to the working directory. report.generate()
def solveMocoInverseMuscle(): #Construct the MocoInverse tool. inverse = osim.MocoInverse() inverse.setName('inverseMuscleTracking') #Construct a ModelProcessor and set it on the tool. #Currently the coordinate actuators for the pelvis, along with the reserve #actuators are fairly generally set, and not weighted at all in cost function. #These actuators could be more carefully considered to generate an appropriate #muscle driven simulation. For example, if they max and min control to 1 - the #pelvis actuators may not produce enough torque. modelProcessor = osim.ModelProcessor('scaledModelMuscle.osim') modelProcessor.append(osim.ModOpAddExternalLoads('Jog05_grf.xml')) modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) modelProcessor.append(osim.ModOpReplaceMusclesWithDeGrooteFregly2016()) # Only valid for DeGrooteFregly2016Muscles. # modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) modelProcessor.append(osim.ModOpAddReserves(2)) inverse.setModel(modelProcessor) #Construct a TableProcessor of the coordinate data and pass it to the #inverse tool. TableProcessors can be used in the same way as #ModelProcessors by appending TableOperators to modify the base table. #A TableProcessor with no operators, as we have here, simply returns the #base table. inverse.setKinematics(osim.TableProcessor('ikResults_states.sto')) #Initial time, final time, and mesh interval. inverse.set_initial_time(osim.Storage('ikResults_states.sto').getFirstTime()) inverse.set_final_time(osim.Storage('ikResults_states.sto').getLastTime()) inverse.set_mesh_interval(0.02) # By default, Moco gives an error if the kinematics contains extra columns. # Here, we tell Moco to allow (and ignore) those extra columns. inverse.set_kinematics_allow_extra_columns(True) # Solve the problem and write the solution to a Storage file. solution = inverse.solve() #Return the solution as an object that we can use return solution
def run_inverse_problem(self, root_dir): modelProcessor = self.create_model_processor(root_dir, for_inverse=True) inverse = osim.MocoInverse() inverse.setModel(modelProcessor) tableProcessor = osim.TableProcessor(os.path.join(root_dir, 'resources/Rajagopal2016/coordinates.mot')) tableProcessor.append(osim.TabOpLowPassFilter(6)) tableProcessor.append(osim.TabOpUseAbsoluteStateNames()) inverse.setKinematics(tableProcessor) inverse.set_kinematics_allow_extra_columns(True) inverse.set_initial_time(self.initial_time) inverse.set_final_time(self.half_time) inverse.set_mesh_interval(self.mesh_interval) solution = inverse.solve() solution.getMocoSolution().write( os.path.join(root_dir, self.inverse_solution_relpath))
import os import numpy as np ## Part 1: Muscle redundancy problem: effort minimization. # Solve the muscle redundancy problem while minimizing muscle excitations # squared using the MocoInverse tool. # Part 1a: Load a 19 degree-of-freedom model with 18 lower-limb, # sagittal-plane muscles and a torque-actuated torso. This includes a set of # ground reaction forces applied to the model via ExternalLoads, which is # necessary for the muscle redundancy problem. See the function definition # at the bottom of this file to see how the model is loaded and constructed. model = helpers.getWalkingModel() # Part 1b: Create the MocoInverse tool and set the Model. inverse = osim.MocoInverse() inverse.setModel(model) # Part 1c: Create a TableProcessor using the coordinates file from inverse # kinematics. coordinates = osim.TableProcessor('coordinates.mot') coordinates.append(osim.TabOpLowPassFilter(6)) coordinates.append(osim.TabOpUseAbsoluteStateNames()) # Part 1d: Set the kinematics reference for MocoInverse using the # TableProcessor we just created. inverse.setKinematics(coordinates) inverse.set_kinematics_allow_extra_columns(True) # Part 1e: Provide the solver settings: initial and final time, the mesh # interval, and the constraint and convergence tolerances.
def solveMocoInverseWithEMG(): # This initial block of code is identical to the code above. inverse = osim.MocoInverse() modelProcessor = osim.ModelProcessor('subject_walk_armless.osim') modelProcessor.append(osim.ModOpAddExternalLoads('grf_walk.xml')) modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) modelProcessor.append(osim.ModOpReplaceMusclesWithDeGrooteFregly2016()) modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) modelProcessor.append(osim.ModOpAddReserves(1.0)) inverse.setModel(modelProcessor) inverse.setKinematics(osim.TableProcessor('coordinates.sto')) inverse.set_initial_time(0.81) inverse.set_final_time(1.79) inverse.set_mesh_interval(0.02) inverse.set_kinematics_allow_extra_columns(True) study = inverse.initialize() problem = study.updProblem() # Add electromyography tracking. emgTracking = osim.MocoControlTrackingGoal('emg_tracking') emgTracking.setWeight(50.0) # Each column in electromyography.sto is normalized so the maximum value in # each column is 1.0. controlsRef = osim.TimeSeriesTable('electromyography.sto') # Scale the tracked muscle activity based on peak levels from # "Gait Analysis: Normal and Pathological Function" by # Perry and Burnfield, 2010 (digitized by Carmichael Ong). soleus = controlsRef.updDependentColumn('soleus') gasmed = controlsRef.updDependentColumn('gastrocnemius') tibant = controlsRef.updDependentColumn('tibialis_anterior') for t in range(0, controlsRef.getNumRows()): soleus[t] = 0.77 * soleus[t] gasmed[t] = 0.87 * gasmed[t] tibant[t] = 0.37 * tibant[t] emgTracking.setReference(osim.TableProcessor(controlsRef)) # Associate actuators in the model with columns in electromyography.sto. emgTracking.setReferenceLabel('/forceset/soleus_r', 'soleus') emgTracking.setReferenceLabel('/forceset/gasmed_r', 'gastrocnemius') emgTracking.setReferenceLabel('/forceset/gaslat_r', 'gastrocnemius') emgTracking.setReferenceLabel('/forceset/tibant_r', 'tibialis_anterior') problem.addGoal(emgTracking) # Solve the problem and write the solution to a Storage file. solution = study.solve() solution.write('example3DWalking_MocoInverseWithEMG_solution.sto') # Write the reference data in a way that's easy to compare to the solution. controlsRef.removeColumn('medial_hamstrings') controlsRef.removeColumn('biceps_femoris') controlsRef.removeColumn('vastus_lateralis') controlsRef.removeColumn('vastus_medius') controlsRef.removeColumn('rectus_femoris') controlsRef.removeColumn('gluteus_maximus') controlsRef.removeColumn('gluteus_medius') controlsRef.setColumnLabels( ['/forceset/soleus_r', '/forceset/gasmed_r', '/forceset/tibant_r']) controlsRef.appendColumn('/forceset/gaslat_r', gasmed) osim.STOFileAdapter.write(controlsRef, 'controls_reference.sto') # Generate a report comparing MocoInverse solutions without and with EMG # tracking. model = modelProcessor.process() output = 'example3DWalking_MocoInverseWithEMG_report.pdf' ref_files = [ 'example3DWalking_MocoInverseWithEMG_solution.sto', 'controls_reference.sto' ] report = osim.report.Report(model, 'example3DWalking_MocoInverse_solution.sto', output=output, bilateral=True, ref_files=ref_files) # The PDF is saved to the working directory. report.generate()