def train_classifier(collection, bow, pagerank, dataset, output, max_iter): """ Trains a tag classifier on a NIF dataset. """ if output is None: output = 'trained_classifier.pkl' b = BOWLanguageModel() b.load(bow) graph = WikidataGraph() graph.load_pagerank(pagerank) tagger = Tagger(collection, b, graph) d = NIFCollection.load(dataset) clf = SimpleTagClassifier(tagger) max_iter = int(max_iter) parameter_grid = [] for max_distance in [50, 75, 150, 200]: for similarity, beta in [('one_step', 0.2), ('one_step', 0.1), ('one_step', 0.3)]: for C in [10.0, 1.0, 0.1]: for smoothing in [0.8, 0.6, 0.5, 0.4, 0.3]: parameter_grid.append({ 'nb_steps': 4, 'max_similarity_distance': max_distance, 'C': C, 'similarity': similarity, 'beta': beta, 'similarity_smoothing': smoothing, }) best_params = clf.crossfit_model(d, parameter_grid, max_iter=max_iter) print('#########') print(best_params) clf.save(output)
def preprocess(filename, outfile): """ Preprocesses a Wikidata .json.bz2 dump into a TSV format representing its adjacency matrix. """ if outfile is None: outfile = '.'.join(filename.split('.')[:-2] + ["unsorted.tsv"]) g = WikidataGraph() g.preprocess_dump(filename, outfile)
def pagerank_shell(filename): """ Interactively retrieve the pagerank on chosen items """ g = WikidataGraph() g.load_pagerank(filename) while True: qid = input('>>> ') print(g.get_pagerank(qid))
def test_compute_pagerank(self): graph = WikidataGraph() graph.load_from_matrix( os.path.join(self.testdir, 'data/sample_wikidata_items.npz')) graph.compute_pagerank() self.assertTrue( graph.get_pagerank('Q45') > 0.0003 and graph.get_pagerank('Q45') < 0.0004)
def compute_pagerank(filename, outfile): """ Computes the pagerank of a Wikidata adjacency matrix as represented by a Numpy sparse matrix in NPZ format. """ if outfile is None: outfile = '.'.join(filename.split('.')[:-1] + ['pgrank.npy']) g = WikidataGraph() g.load_from_matrix(filename) g.compute_pagerank() g.save_pagerank(outfile)
def compile(filename, outfile): """ Compiles a sorted preprocessed Wikidata dump in TSV format to a Numpy sparse matrix. """ if outfile is None: outfile = '.'.join(filename.split('.')[:-1] + ['npz']) g = WikidataGraph() g.load_from_preprocessed_dump(filename) g.save_matrix(outfile)
def setUpClass(cls): cls.testdir = os.path.dirname(os.path.abspath(__file__)) # Load dummy bow bow_fname = os.path.join(cls.testdir, 'data/sample_bow.pkl') cls.bow = BOWLanguageModel() cls.bow.load(bow_fname) # Load dummy graph graph_fname = os.path.join(cls.testdir, 'data/sample_wikidata_items.npz') pagerank_fname = os.path.join(cls.testdir, 'data/sample_wikidata_items.pgrank.npy') cls.graph = WikidataGraph() cls.graph.load_from_matrix(graph_fname) cls.graph.load_pagerank(pagerank_fname) # Load dummy profile cls.profile = IndexingProfile.load( os.path.join(cls.testdir, 'data/all_items_profile.json')) # Setup solr index (TODO delete this) and tagger cls.tf = TaggerFactory() cls.collection_name = 'wd_test_collection' try: cls.tf.create_collection(cls.collection_name) except CollectionAlreadyExists: pass cls.tf.index_stream( cls.collection_name, WikidataDumpReader( os.path.join(cls.testdir, 'data/sample_wikidata_items.json.bz2')), cls.profile) cls.tagger = Tagger(cls.collection_name, cls.bow, cls.graph) # Load NIF dataset cls.nif = NIFCollection.load( os.path.join(cls.testdir, 'data/five-affiliations.ttl')) cls.classifier = SimpleTagClassifier(cls.tagger, max_similarity_distance=10, similarity_smoothing=2)
def setUpClass(cls): super(TaggerTest, cls).tearDownClass() testdir = os.path.dirname(os.path.abspath(__file__)) # Load dummy bow bow_fname = os.path.join(testdir, 'data/sample_bow.pkl') cls.bow = BOWLanguageModel() cls.bow.load(bow_fname) # Load dummy graph graph_fname = os.path.join(testdir, 'data/sample_wikidata_items.npz') pagerank_fname = os.path.join(testdir, 'data/sample_wikidata_items.pgrank.npy') cls.graph = WikidataGraph() cls.graph.load_from_matrix(graph_fname) cls.graph.load_pagerank(pagerank_fname) # Load indexing profile cls.profile = IndexingProfile.load( os.path.join(testdir, 'data/all_items_profile.json')) # Setup solr index cls.tf = TaggerFactory() cls.collection_name = 'wd_test_collection' try: cls.tf.delete_collection('wd_test_collection') except requests.exceptions.RequestException: pass cls.tf.create_collection(cls.collection_name) cls.tf.index_stream( 'wd_test_collection', WikidataDumpReader( os.path.join(testdir, 'data/sample_wikidata_items.json.bz2')), cls.profile) cls.sut = Tagger(cls.collection_name, cls.bow, cls.graph)
import settings from opentapioca.wikidatagraph import WikidataGraph from opentapioca.languagemodel import BOWLanguageModel from opentapioca.tagger import Tagger from opentapioca.classifier import SimpleTagClassifier logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s') tapioca_dir = os.path.dirname(__file__) bow = BOWLanguageModel() if settings.LANGUAGE_MODEL_PATH: bow.load(settings.LANGUAGE_MODEL_PATH) graph = WikidataGraph() if settings.PAGERANK_PATH: graph.load_pagerank(settings.PAGERANK_PATH) tagger = None classifier = None if settings.SOLR_COLLECTION: tagger = Tagger(settings.SOLR_COLLECTION, bow, graph) classifier = SimpleTagClassifier(tagger) if settings.CLASSIFIER_PATH: classifier.load(settings.CLASSIFIER_PATH) def jsonp(view): """ Decorator for views that return JSON """
def test_compile_dump(self): graph = WikidataGraph() graph.load_from_preprocessed_dump( os.path.join(self.testdir, 'data/sample_wikidata_items.tsv')) graph.mat.check_format() self.assertEqual(graph.shape, 3942)
def test_compile_unordered_dump(self): graph = WikidataGraph() with self.assertRaises(ValueError): graph.load_from_preprocessed_dump( os.path.join(self.testdir, 'data/sample_wikidata_items.unsorted.tsv'))