Пример #1
0
def simple_if(condition_val):
    condition = ov.constant(condition_val, dtype=np.bool)
    # then_body
    X_t = ov.parameter([2], np.float32, "X")
    Y_t = ov.parameter([2], np.float32, "Y")

    then_mul = ov.multiply(X_t, Y_t)
    then_body_res_1 = ov.result(then_mul)
    then_body = Model([then_body_res_1], [X_t, Y_t], "then_body_function")

    # else_body
    X_e = ov.parameter([2], np.float32, "X")
    Y_e = ov.parameter([2], np.float32, "Y")
    add_e = ov.add(X_e, Y_e)
    else_body_res_1 = ov.result(add_e)
    else_body = Model([else_body_res_1], [X_e, Y_e], "else_body_function")

    X = ov.constant([3, 4], dtype=np.float32)
    Y = ov.constant([2, 1], dtype=np.float32)

    if_node = ov.if_op(condition)
    if_node.set_then_body(then_body)
    if_node.set_else_body(else_body)
    if_node.set_input(X.output(0), X_t, X_e)
    if_node.set_input(Y.output(0), Y_t, Y_e)
    if_res = if_node.set_output(then_body_res_1, else_body_res_1)
    relu = ov.relu(if_res)

    return relu
Пример #2
0
def simple_if(condition_val):
    condition = ov.constant(condition_val, dtype=np.bool)
    # then_body
    X_t = ov.parameter([2], np.float32, "X")
    Y_t = ov.parameter([2], np.float32, "Y")

    then_mul = ov.multiply(X_t, Y_t)
    then_body_res_1 = ov.result(then_mul)
    then_body = GraphBody([X_t, Y_t], [then_body_res_1])
    then_body_inputs = [
        TensorIteratorInvariantInputDesc(1, 0),
        TensorIteratorInvariantInputDesc(2, 1)
    ]
    then_body_outputs = [TensorIteratorBodyOutputDesc(0, 0)]

    # else_body
    X_e = ov.parameter([2], np.float32, "X")
    Y_e = ov.parameter([2], np.float32, "Y")
    add_e = ov.add(X_e, Y_e)
    else_body_res_1 = ov.result(add_e)
    else_body = GraphBody([X_e, Y_e], [else_body_res_1])
    else_body_inputs = [
        TensorIteratorInvariantInputDesc(1, 0),
        TensorIteratorInvariantInputDesc(2, 1)
    ]
    else_body_outputs = [TensorIteratorBodyOutputDesc(0, 0)]

    X = ov.constant([3, 4], dtype=np.float32)
    Y = ov.constant([2, 1], dtype=np.float32)
    if_node = ov.if_op(condition, [X, Y], (then_body, else_body),
                       (then_body_inputs, else_body_inputs),
                       (then_body_outputs, else_body_outputs))
    relu = ov.relu(if_node)
    return relu
Пример #3
0
def test_lrn():
    input_image_shape = (2, 3, 2, 1)
    input_image = np.arange(int(np.prod(input_image_shape))).reshape(input_image_shape).astype("f")
    axes = np.array([1], dtype=np.int64)
    runtime = get_runtime()
    model = ov.lrn(ov.constant(input_image), ov.constant(axes), alpha=1.0, beta=2.0, bias=1.0, size=3)
    computation = runtime.computation(model)
    result = computation()
    assert np.allclose(
        result,
        np.array(
            [
                [[[0.0], [0.05325444]], [[0.03402646], [0.01869806]], [[0.06805293], [0.03287071]]],
                [[[0.00509002], [0.00356153]], [[0.00174719], [0.0012555]], [[0.00322708], [0.00235574]]],
            ],
            dtype=np.float32,
        ),
    )

    # Test LRN default parameter values
    model = ov.lrn(ov.constant(input_image), ov.constant(axes))
    computation = runtime.computation(model)
    result = computation()
    assert np.allclose(
        result,
        np.array(
            [
                [[[0.0], [0.35355338]], [[0.8944272], [1.0606602]], [[1.7888544], [1.767767]]],
                [[[0.93704253], [0.97827977]], [[1.2493901], [1.2577883]], [[1.5617375], [1.5372968]]],
            ],
            dtype=np.float32,
        ),
    )
Пример #4
0
def test_random_uniform():
    runtime = get_runtime()
    input_tensor = ov.constant(np.array([2, 4, 3], dtype=np.int32))
    min_val = ov.constant(np.array([-2.7], dtype=np.float32))
    max_val = ov.constant(np.array([3.5], dtype=np.float32))

    random_uniform_node = ov.random_uniform(input_tensor,
                                            min_val,
                                            max_val,
                                            output_type="f32",
                                            global_seed=7461,
                                            op_seed=1546)
    computation = runtime.computation(random_uniform_node)
    random_uniform_results = computation()
    expected_results = np.array([[[2.8450181, -2.3457108, 2.2134445],
                                  [-1.0436587, 0.79548645, 1.3023183],
                                  [0.34447956, -2.0267959, 1.3989122],
                                  [0.9607613, 1.5363653, 3.117298]],
                                 [[1.570041, 2.2782724, 2.3193843],
                                  [3.3393657, 0.63299894, 0.41231918],
                                  [3.1739233, 0.03919673, -0.2136085],
                                  [-1.4519991, -2.277353, 2.630727]]],
                                dtype=np.float32)

    assert np.allclose(random_uniform_results, expected_results)
Пример #5
0
def test_split():
    runtime = get_runtime()
    input_tensor = ov.constant(np.array([0, 1, 2, 3, 4, 5], dtype=np.int32))
    axis = ov.constant(0, dtype=np.int64)
    splits = 3

    split_node = ov.split(input_tensor, axis, splits)
    computation = runtime.computation(split_node)
    split_results = computation()
    expected_results = np.array([[0, 1], [2, 3], [4, 5]], dtype=np.int32)
    assert np.allclose(split_results, expected_results)
Пример #6
0
def test_dft_3d():
    runtime = get_runtime()
    input_data = build_fft_input_data()
    input_tensor = ov.constant(input_data)
    input_axes = ov.constant(np.array([0, 1, 2], dtype=np.int64))

    dft_node = ov.dft(input_tensor, input_axes)
    computation = runtime.computation(dft_node)
    dft_results = computation()
    np_results = np.fft.fftn(np.squeeze(input_data.view(dtype=np.complex64), axis=-1),
                             axes=[0, 1, 2]).astype(np.complex64)
    expected_results = np.stack((np_results.real, np_results.imag), axis=-1)
    assert np.allclose(dft_results, expected_results, atol=0.0002)
Пример #7
0
def test_roll():
    runtime = get_runtime()
    input = np.reshape(np.arange(10), (2, 5))
    input_tensor = ov.constant(input)
    input_shift = ov.constant(np.array([-10, 7], dtype=np.int32))
    input_axes = ov.constant(np.array([-1, 0], dtype=np.int32))

    roll_node = ov.roll(input_tensor, input_shift, input_axes)
    computation = runtime.computation(roll_node)
    roll_results = computation()
    expected_results = np.roll(input, shift=(-10, 7), axis=(-1, 0))

    assert np.allclose(roll_results, expected_results)
Пример #8
0
def create_simple_if_with_two_outputs(condition_val):
    condition = ov.constant(condition_val, dtype=np.bool)

    # then_body
    X_t = ov.parameter([], np.float32, "X")
    Y_t = ov.parameter([], np.float32, "Y")
    Z_t = ov.parameter([], np.float32, "Z")

    add_t = ov.add(X_t, Y_t)
    mul_t = ov.multiply(Y_t, Z_t)
    then_body_res_1 = ov.result(add_t)
    then_body_res_2 = ov.result(mul_t)
    then_body = GraphBody([X_t, Y_t, Z_t], [then_body_res_1, then_body_res_2])
    then_body_inputs = [
        TensorIteratorInvariantInputDesc(1, 0),
        TensorIteratorInvariantInputDesc(2, 1),
        TensorIteratorInvariantInputDesc(3, 2)
    ]
    then_body_outputs = [
        TensorIteratorBodyOutputDesc(0, 0),
        TensorIteratorBodyOutputDesc(1, 1)
    ]

    # else_body
    X_e = ov.parameter([], np.float32, "X")
    Z_e = ov.parameter([], np.float32, "Z")
    W_e = ov.parameter([], np.float32, "W")

    add_e = ov.add(X_e, W_e)
    pow_e = ov.power(W_e, Z_e)
    else_body_res_1 = ov.result(add_e)
    else_body_res_2 = ov.result(pow_e)
    else_body = GraphBody([X_e, Z_e, W_e], [else_body_res_1, else_body_res_2])
    else_body_inputs = [
        TensorIteratorInvariantInputDesc(1, 0),
        TensorIteratorInvariantInputDesc(3, 1),
        TensorIteratorInvariantInputDesc(4, 2)
    ]
    else_body_outputs = [
        TensorIteratorBodyOutputDesc(0, 0),
        TensorIteratorBodyOutputDesc(1, 1)
    ]

    X = ov.constant(15.0, dtype=np.float32)
    Y = ov.constant(-5.0, dtype=np.float32)
    Z = ov.constant(4.0, dtype=np.float32)
    W = ov.constant(2.0, dtype=np.float32)
    if_node = ov.if_op(condition, [X, Y, Z, W], (then_body, else_body),
                       (then_body_inputs, else_body_inputs),
                       (then_body_outputs, else_body_outputs))
    return if_node
Пример #9
0
def test_variadic_split():
    runtime = get_runtime()
    input_tensor = ov.constant(np.array([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]], dtype=np.int32))
    axis = ov.constant(1, dtype=np.int64)
    splits = ov.constant(np.array([2, 4], dtype=np.int64))

    v_split_node = ov.variadic_split(input_tensor, axis, splits)
    computation = runtime.computation(v_split_node)
    results = computation()
    split0 = np.array([[0, 1], [6, 7]], dtype=np.int32)
    split1 = np.array([[2, 3, 4, 5], [8, 9, 10, 11]], dtype=np.int32)

    assert np.allclose(results[0], split0)
    assert np.allclose(results[1], split1)
Пример #10
0
def test_simple_loop():
    X = ov.parameter(Shape([32, 1, 10]), np.float32, "X")
    Y = ov.parameter(Shape([32, 1, 10]), np.float32, "Y")
    M = ov.parameter(Shape([32, 1, 10]), np.float32, "M")

    input_shape = Shape([])

    current_iteration = ov.parameter(Shape([1]), np.int64)
    X_i = ov.parameter(input_shape, np.float32)
    Y_i = ov.parameter(input_shape, np.float32)
    M_body = ov.parameter(input_shape, np.float32)
    bool_val = np.array([1], dtype=np.bool)
    bool_val[0] = True
    body_condition = ov.constant(bool_val)
    trip_count = ov.constant(10, dtype=np.int64)
    exec_condition = ov.constant(True, dtype=np.bool)

    sum = ov.add(X_i, Y_i)
    Zo = ov.multiply(sum, M_body)

    body = Model([body_condition, Zo], [current_iteration, X_i, Y_i, M_body],
                 "body_function")

    loop = ov.loop(trip_count, exec_condition)
    loop.set_function(body)
    loop.set_invariant_input(X_i, X.output(0))
    loop.set_invariant_input(Y_i, Y.output(0))
    loop.set_merged_input(M_body, M.output(0), Zo.output(0))
    loop.set_special_body_ports([-1, 0])

    out0 = loop.get_iter_value(body_condition.output(0), -1)
    out1 = loop.get_iter_value(Zo.output(0), -1)
    out2 = loop.get_concatenated_slices(Zo.output(0), 0, 1, 1, -1, 1)

    result0 = ov.result(out0)
    result1 = ov.result(out1)
    result2 = ov.result(out2)

    out0_shape = [1]
    out1_shape = [32, 1, 10]
    out2_shape = [32, 10, 10]

    assert list(result0.get_output_shape(0)) == out0_shape
    assert list(result1.get_output_shape(0)) == out1_shape
    assert list(result2.get_output_shape(0)) == out2_shape

    assert list(loop.get_output_shape(0)) == out0_shape
    assert list(loop.get_output_shape(1)) == out1_shape
    assert list(loop.get_output_shape(2)) == out2_shape
Пример #11
0
def test_idft_2d():
    runtime = get_runtime()
    expected_results = get_data()
    complex_input_data = np.fft.fft2(np.squeeze(
        expected_results.view(dtype=np.complex64), axis=-1),
                                     axes=[1, 2]).astype(np.complex64)
    input_data = np.stack((complex_input_data.real, complex_input_data.imag),
                          axis=-1)
    input_tensor = ov.constant(input_data)
    input_axes = ov.constant(np.array([1, 2], dtype=np.int64))

    dft_node = ov.idft(input_tensor, input_axes)
    computation = runtime.computation(dft_node)
    dft_results = computation()
    assert np.allclose(dft_results, expected_results, atol=0.000002)
Пример #12
0
def test_idft_2d_signal_size_1():
    runtime = get_runtime()
    input_data = get_data()
    input_tensor = ov.constant(input_data)
    input_axes = ov.constant(np.array([0, 2], dtype=np.int64))
    input_signal_size = ov.constant(np.array([4, 5], dtype=np.int64))

    dft_node = ov.idft(input_tensor, input_axes, input_signal_size)
    computation = runtime.computation(dft_node)
    dft_results = computation()
    np_results = np.fft.ifft2(np.squeeze(input_data.view(dtype=np.complex64),
                                         axis=-1),
                              s=[4, 5],
                              axes=[0, 2]).astype(np.complex64)
    expected_results = np.stack((np_results.real, np_results.imag), axis=-1)
    assert np.allclose(dft_results, expected_results, atol=0.000002)
Пример #13
0
def test_batched_tensors(device):
    core = Core()
    # TODO: remove when plugins will support set_input_tensors
    core.register_plugin("openvino_template_plugin", "TEMPLATE")

    batch = 4
    one_shape = [1, 2, 2, 2]
    one_shape_size = np.prod(one_shape)
    batch_shape = [batch, 2, 2, 2]

    data1 = ops.parameter(batch_shape, np.float32)
    data1.set_friendly_name("input0")
    data1.get_output_tensor(0).set_names({"tensor_input0"})
    data1.set_layout(Layout("N..."))

    constant = ops.constant([1], np.float32)

    op1 = ops.add(data1, constant)
    op1.set_friendly_name("Add0")

    res1 = ops.result(op1)
    res1.set_friendly_name("Result0")
    res1.get_output_tensor(0).set_names({"tensor_output0"})

    model = Model([res1], [data1])

    compiled = core.compile_model(model, "TEMPLATE")

    req = compiled.create_infer_request()

    # Allocate 8 chunks, set 'user tensors' to 0, 2, 4, 6 chunks
    buffer = np.zeros([batch * 2, *batch_shape[1:]], dtype=np.float32)

    tensors = []
    for i in range(batch):
        # non contiguous memory (i*2)
        tensors.append(
            Tensor(np.expand_dims(buffer[i * 2], 0), shared_memory=True))

    req.set_input_tensors(tensors)

    with pytest.raises(RuntimeError) as e:
        req.get_tensor("tensor_input0")
    assert "get_tensor shall not be used together with batched set_tensors/set_input_tensors" in str(
        e.value)

    actual_tensor = req.get_tensor("tensor_output0")
    actual = actual_tensor.data
    for test_num in range(0, 5):
        for i in range(0, batch):
            tensors[i].data[:] = test_num + 10

        req.infer()  # Adds '1' to each element

        # Reference values for each batch:
        _tmp = np.array([test_num + 11] * one_shape_size,
                        dtype=np.float32).reshape([2, 2, 2])

        for j in range(0, batch):
            assert np.array_equal(actual[j], _tmp)
Пример #14
0
def test_group_convolution_backprop_data_output_shape():
    runtime = get_runtime()

    data_shape = [1, 1, 1, 10]
    filters_shape = [1, 1, 1, 1, 5]
    strides = [1, 1]

    data_node = ov.parameter(data_shape, name="Data", dtype=np.float32)
    filters_node = ov.parameter(filters_shape, name="Filters", dtype=np.float32)
    output_shape_node = ov.constant(np.array([1, 14], dtype=np.int64))

    model = ov.group_convolution_backprop_data(
        data_node, filters_node, strides, output_shape_node, auto_pad="same_upper"
    )

    data_value = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0], dtype=np.float32).reshape(
        data_shape
    )

    filters_value = np.array([1.0, 2.0, 3.0, 2.0, 1.0], dtype=np.float32).reshape(filters_shape)

    computation = runtime.computation(model, data_node, filters_node)
    result = computation(data_value, filters_value)

    expected = np.array(
        [0.0, 1.0, 4.0, 10.0, 18.0, 27.0, 36.0, 45.0, 54.0, 63.0, 62.0, 50.0, 26.0, 9.0], dtype=np.float32,
    ).reshape(1, 1, 1, 14)

    assert np.allclose(result, expected)
Пример #15
0
def test_batched_tensors(device):
    batch = 4
    one_shape = Shape([1, 2, 2, 2])
    batch_shape = Shape([batch, 2, 2, 2])
    one_shape_size = np.prod(one_shape)

    core = Core()

    core.register_plugin("openvino_template_plugin", "TEMPLATE")

    data1 = ops.parameter(batch_shape, np.float32)
    data1.set_friendly_name("input0")
    data1.get_output_tensor(0).set_names({"tensor_input0"})
    data1.set_layout(Layout("N..."))

    constant = ops.constant([1], np.float32)

    op1 = ops.add(data1, constant)
    op1.set_friendly_name("Add0")

    res1 = ops.result(op1)
    res1.set_friendly_name("Result0")
    res1.get_output_tensor(0).set_names({"tensor_output0"})

    model = Model([res1], [data1])

    compiled = core.compile_model(model, "TEMPLATE")

    buffer = np.zeros([one_shape_size * batch * 2], dtype=np.float32)

    req = compiled.create_infer_request()

    tensors = []

    for i in range(0, batch):
        _start = i * one_shape_size * 2
        # Use of special constructor for Tensor.
        # It creates a Tensor from pointer, thus it requires only
        # one element from original buffer, and shape to "crop".
        tensor = Tensor(buffer[_start:(_start + 1)], one_shape)
        tensors.append(tensor)

    req.set_input_tensors(tensors)  # using list overload!

    actual_tensor = req.get_tensor("tensor_output0")
    actual = actual_tensor.data
    for test_num in range(0, 5):
        for i in range(0, batch):
            tensors[i].data[:] = test_num + 10

        req.infer()  # Adds '1' to each element

        # Reference values for each batch:
        _tmp = np.array([test_num + 11] * one_shape_size,
                        dtype=np.float32).reshape([2, 2, 2])

        for j in range(0, batch):
            assert np.array_equal(actual[j], _tmp)
Пример #16
0
def test_convolution_backprop_data():
    runtime = get_runtime()

    output_spatial_shape = [9, 9]
    filter_shape = [1, 1, 3, 3]
    data_shape = [1, 1, 7, 7]
    strides = [1, 1]

    data_node = ov.parameter(shape=data_shape)
    filter_node = ov.parameter(shape=filter_shape)
    output_shape_node = ov.constant(np.array(output_spatial_shape, dtype=np.int64))

    deconvolution = ov.convolution_backprop_data(data_node, filter_node, strides, output_shape_node)

    input_data = np.array(
        [
            [
                [
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                    [-20, -20, 20, 20, 0, 0, 0],
                ]
            ]
        ],
        dtype=np.float32,
    )

    filter_data = np.array([[1.0, 0.0, -1.0], [2.0, 0.0, -2.0], [1.0, 0.0, -1.0]], dtype=np.float32).reshape(
        1, 1, 3, 3
    )

    model = runtime.computation(deconvolution, data_node, filter_node)
    result = model(input_data, filter_data)
    assert np.allclose(
        result,
        np.array(
            [
                [
                    [
                        [-20.0, -20.0, 40.0, 40.0, -20.0, -20.0, 0.0, 0.0, 0.0],
                        [-60.0, -60.0, 120.0, 120.0, -60.0, -60.0, 0.0, 0.0, 0.0],
                        [-80.0, -80.0, 160.0, 160.0, -80.0, -80.0, 0.0, 0.0, 0.0],
                        [-80.0, -80.0, 160.0, 160.0, -80.0, -80.0, 0.0, 0.0, 0.0],
                        [-80.0, -80.0, 160.0, 160.0, -80.0, -80.0, 0.0, 0.0, 0.0],
                        [-80.0, -80.0, 160.0, 160.0, -80.0, -80.0, 0.0, 0.0, 0.0],
                        [-80.0, -80.0, 160.0, 160.0, -80.0, -80.0, 0.0, 0.0, 0.0],
                        [-60.0, -60.0, 120.0, 120.0, -60.0, -60.0, 0.0, 0.0, 0.0],
                        [-20.0, -20.0, 40.0, 40.0, -20.0, -20.0, 0.0, 0.0, 0.0],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )
Пример #17
0
def test_constant_get_data_unsigned_integer(data_type):
    np.random.seed(133391)
    input_data = np.random.randn(2, 3, 4).astype(data_type)
    input_data = (np.iinfo(data_type).min +
                  input_data * np.iinfo(data_type).max +
                  input_data * np.iinfo(data_type).max)
    node = ops.constant(input_data, dtype=data_type)
    retrieved_data = node.get_data()
    assert np.allclose(input_data, retrieved_data)
Пример #18
0
def test_constant_get_data_signed_integer(data_type):
    np.random.seed(133391)
    input_data = np.random.randint(np.iinfo(data_type).min,
                                   np.iinfo(data_type).max,
                                   size=[2, 3, 4],
                                   dtype=data_type)
    node = ops.constant(input_data, dtype=data_type)
    retrieved_data = node.get_data()
    assert np.allclose(input_data, retrieved_data)
Пример #19
0
def test_constant_get_data_floating_point(data_type):
    np.random.seed(133391)
    input_data = np.random.randn(2, 3, 4).astype(data_type)
    min_value = -1.0e20
    max_value = 1.0e20
    input_data = min_value + input_data * max_value * data_type(2)
    node = ops.constant(input_data, dtype=data_type)
    retrieved_data = node.get_data()
    assert np.allclose(input_data, retrieved_data)
Пример #20
0
def test_constant_opset_numpy_type():
    parameter_list = []
    function = Model([ov.constant(np.arange(9).reshape(3, 3), np.float32)], parameter_list, "test")

    runtime = get_runtime()
    computation = runtime.computation(function, *parameter_list)
    result = computation()[0]

    expected = np.arange(9).reshape(3, 3)
    assert np.allclose(result, expected)
Пример #21
0
def simple_if_without_parameters(condition_val):
    condition = ov.constant(condition_val, dtype=np.bool)

    # then_body
    then_constant = ov.constant(0.7, dtype=np.float)
    then_body_res_1 = ov.result(then_constant)
    then_body = Model([then_body_res_1], [])

    # else_body
    else_const = ov.constant(9.0, dtype=np.float)
    else_body_res_1 = ov.result(else_const)
    else_body = Model([else_body_res_1], [])

    if_node = ov.if_op(condition.output(0))
    if_node.set_then_body(then_body)
    if_node.set_else_body(else_body)
    if_res = if_node.set_output(then_body_res_1, else_body_res_1)
    relu = ov.relu(if_res)
    return relu
Пример #22
0
def create_diff_if_with_two_outputs(condition_val):
    condition = ov.constant(condition_val, dtype=np.bool)

    # then_body
    X_t = ov.parameter([2], np.float32, "X")
    Y_t = ov.parameter([2], np.float32, "Y")
    mmul_t = ov.matmul(X_t, Y_t, False, False)
    mul_t = ov.multiply(Y_t, X_t)
    then_body_res_1 = ov.result(mmul_t)
    then_body_res_2 = ov.result(mul_t)
    then_body = GraphBody([X_t, Y_t], [then_body_res_1, then_body_res_2])
    then_body_inputs = [
        TensorIteratorInvariantInputDesc(1, 0),
        TensorIteratorInvariantInputDesc(2, 1)
    ]
    then_body_outputs = [
        TensorIteratorBodyOutputDesc(0, 0),
        TensorIteratorBodyOutputDesc(1, 1)
    ]

    # else_body
    X_e = ov.parameter([2], np.float32, "X")
    Z_e = ov.parameter([], np.float32, "Z")
    mul_e = ov.multiply(X_e, Z_e)
    else_body_res_1 = ov.result(Z_e)
    else_body_res_2 = ov.result(mul_e)
    else_body = GraphBody([X_e, Z_e], [else_body_res_1, else_body_res_2])
    else_body_inputs = [
        TensorIteratorInvariantInputDesc(1, 0),
        TensorIteratorInvariantInputDesc(3, 1)
    ]
    else_body_outputs = [
        TensorIteratorBodyOutputDesc(0, 0),
        TensorIteratorBodyOutputDesc(1, 1)
    ]

    X = ov.constant([3, 4], dtype=np.float32)
    Y = ov.constant([2, 1], dtype=np.float32)
    Z = ov.constant(4.0, dtype=np.float32)
    if_node = ov.if_op(condition, [X, Y, Z], (then_body, else_body),
                       (then_body_inputs, else_body_inputs),
                       (then_body_outputs, else_body_outputs))
    return if_node
Пример #23
0
def create_simple_if_with_two_outputs(condition_val):
    condition = ov.constant(condition_val, dtype=np.bool)

    # then_body
    X_t = ov.parameter([], np.float32, "X")
    Y_t = ov.parameter([], np.float32, "Y")
    Z_t = ov.parameter([], np.float32, "Z")

    add_t = ov.add(X_t, Y_t)
    mul_t = ov.multiply(Y_t, Z_t)
    then_body_res_1 = ov.result(add_t)
    then_body_res_2 = ov.result(mul_t)
    then_body = Model([then_body_res_1, then_body_res_2], [X_t, Y_t, Z_t],
                      "then_body_function")

    # else_body
    X_e = ov.parameter([], np.float32, "X")
    Z_e = ov.parameter([], np.float32, "Z")
    W_e = ov.parameter([], np.float32, "W")

    add_e = ov.add(X_e, W_e)
    pow_e = ov.power(W_e, Z_e)
    else_body_res_1 = ov.result(add_e)
    else_body_res_2 = ov.result(pow_e)
    else_body = Model([else_body_res_1, else_body_res_2], [X_e, Z_e, W_e],
                      "else_body_function")

    X = ov.constant(15.0, dtype=np.float32)
    Y = ov.constant(-5.0, dtype=np.float32)
    Z = ov.constant(4.0, dtype=np.float32)
    W = ov.constant(2.0, dtype=np.float32)

    if_node = ov.if_op(condition)
    if_node.set_then_body(then_body)
    if_node.set_else_body(else_body)
    if_node.set_input(X.output(0), X_t, X_e)
    if_node.set_input(Y.output(0), Y_t, None)
    if_node.set_input(Z.output(0), Z_t, Z_e)
    if_node.set_input(W.output(0), None, W_e)
    if_node.set_output(then_body_res_1, else_body_res_1)
    if_node.set_output(then_body_res_2, else_body_res_2)
    return if_node
Пример #24
0
def test_adaptive_avg_pool():
    runtime = get_runtime()
    input = np.reshape([
        0.0, 4, 1, 3, -2, -5, -2, -2, 1, -3, 1, -3, -4, 0, -2, 1, -1, -2, 3,
        -1, -3, -1, -2, 3, 4, -3, -4, 1, 2, 0, -4, -5, -2, -2, -3, 2, 3, 1, -5,
        2, -4, -2
    ], (2, 3, 7))
    input_tensor = ov.constant(input)
    output_shape = ov.constant(np.array([3], dtype=np.int32))

    adaptive_pool_node = ov.adaptive_avg_pool(input_tensor, output_shape)
    computation = runtime.computation(adaptive_pool_node)
    adaptive_pool_results = computation()
    expected_results = np.reshape([
        1.66666663, 0.66666669, -3., -1.33333337, -1.66666663, -2.33333325,
        -0.66666669, 0., -0.33333334, 0., 1.33333337, -2., -0.66666669,
        -3.66666675, -2.33333325, 2., -0.66666669, -1.33333337
    ], (2, 3, 3))

    assert np.allclose(adaptive_pool_results, expected_results)
Пример #25
0
def test_adaptive_max_pool():
    runtime = get_runtime()
    input = np.reshape([
        0, 4, 1, 3, -2, -5, -2, -2, 1, -3, 1, -3, -4, 0, -2, 1, -1, -2, 3, -1,
        -3, -1, -2, 3, 4, -3, -4, 1, 2, 0, -4, -5, -2, -2, -3, 2, 3, 1, -5, 2,
        -4, -2
    ], (2, 3, 7))
    input_tensor = ov.constant(input)
    output_shape = ov.constant(np.array([3], dtype=np.int32))

    adaptive_pool_node = ov.adaptive_max_pool(input_tensor, output_shape)
    computation = runtime.computation(adaptive_pool_node)
    adaptive_pool_results = computation()
    expected_results = np.reshape(
        [4, 3, -2, 1, 1, 0, 1, 3, 3, 3, 4, 1, 2, -2, -2, 3, 2, 2], (2, 3, 3))

    expected_indices = np.reshape(
        [1, 3, 4, 1, 3, 6, 1, 4, 4, 2, 3, 6, 0, 4, 4, 1, 4, 4], (2, 3, 3))

    assert np.allclose(adaptive_pool_results,
                       [expected_results, expected_indices])
Пример #26
0
def simple_if_without_parameters(condition_val):
    condition = ov.constant(condition_val, dtype=np.bool)

    # then_body
    then_constant = ov.constant(0.7, dtype=np.float)
    then_body_res_1 = ov.result(then_constant)
    then_body = GraphBody([], [then_body_res_1])
    then_body_inputs = []
    then_body_outputs = [TensorIteratorBodyOutputDesc(0, 0)]

    # else_body
    else_const = ov.constant(9.0, dtype=np.float)
    else_body_res_1 = ov.result(else_const)
    else_body = GraphBody([], [else_body_res_1])
    else_body_inputs = []
    else_body_outputs = [TensorIteratorBodyOutputDesc(0, 0)]

    if_node = ov.if_op(condition, [], (then_body, else_body),
                       (then_body_inputs, else_body_inputs),
                       (then_body_outputs, else_body_outputs))
    relu = ov.relu(if_node)
    return relu
Пример #27
0
def test_node_output():
    input_array = np.array([0, 1, 2, 3, 4, 5])
    splits = 3
    expected_shape = len(input_array) // splits

    input_tensor = ops.constant(input_array, dtype=np.int32)
    axis = ops.constant(0, dtype=np.int64)
    split_node = ops.split(input_tensor, axis, splits)

    split_node_outputs = split_node.outputs()

    assert len(split_node_outputs) == splits
    assert [output_node.get_index()
            for output_node in split_node_outputs] == [0, 1, 2]
    assert np.equal(
        [output_node.get_element_type() for output_node in split_node_outputs],
        input_tensor.get_element_type(),
    ).all()
    assert np.equal(
        [output_node.get_shape() for output_node in split_node_outputs],
        Shape([expected_shape]),
    ).all()
    assert np.equal(
        [
            output_node.get_partial_shape()
            for output_node in split_node_outputs
        ],
        PartialShape([expected_shape]),
    ).all()

    output0 = split_node.output(0)
    output1 = split_node.output(1)
    output2 = split_node.output(2)

    assert [output0.get_index(),
            output1.get_index(),
            output2.get_index()] == [0, 1, 2]
Пример #28
0
def test_set_argument():
    runtime = get_runtime()

    data1 = np.array([1, 2, 3])
    data2 = np.array([4, 5, 6])
    data3 = np.array([7, 8, 9])

    node1 = ops.constant(data1, dtype=np.float32)
    node2 = ops.constant(data2, dtype=np.float32)
    node3 = ops.constant(data3, dtype=np.float32)
    node_add = ops.add(node1, node2)

    # Original arguments
    computation = runtime.computation(node_add)
    output = computation()
    assert np.allclose(data1 + data2, output)

    # Arguments changed by set_argument
    node_add.set_argument(1, node3.output(0))
    output = computation()
    assert np.allclose(data1 + data3, output)

    # Arguments changed by set_argument
    node_add.set_argument(0, node3.output(0))
    output = computation()
    assert np.allclose(data3 + data3, output)

    # Arguments changed by set_argument(OutputVector)
    node_add.set_arguments([node2.output(0), node3.output(0)])
    output = computation()
    assert np.allclose(data2 + data3, output)

    # Arguments changed by set_arguments(NodeVector)
    node_add.set_arguments([node1, node2])
    output = computation()
    assert np.allclose(data1 + data2, output)
Пример #29
0
def create_diff_if_with_two_outputs(condition_val):
    condition = ov.constant(condition_val, dtype=np.bool)

    # then_body
    X_t = ov.parameter([2], np.float32, "X")
    Y_t = ov.parameter([2], np.float32, "Y")
    mmul_t = ov.matmul(X_t, Y_t, False, False)
    mul_t = ov.multiply(Y_t, X_t)
    then_body_res_1 = ov.result(mmul_t)
    then_body_res_2 = ov.result(mul_t)
    then_body = Model([then_body_res_1, then_body_res_2], [X_t, Y_t],
                      "then_body_function")

    # else_body
    X_e = ov.parameter([2], np.float32, "X")
    Z_e = ov.parameter([], np.float32, "Z")
    mul_e = ov.multiply(X_e, Z_e)
    else_body_res_1 = ov.result(Z_e)
    else_body_res_2 = ov.result(mul_e)
    else_body = Model([else_body_res_1, else_body_res_2], [X_e, Z_e],
                      "else_body_function")

    X = ov.constant([3, 4], dtype=np.float32)
    Y = ov.constant([2, 1], dtype=np.float32)
    Z = ov.constant(4.0, dtype=np.float32)

    if_node = ov.if_op(condition)
    if_node.set_then_body(then_body)
    if_node.set_else_body(else_body)
    if_node.set_input(X.output(0), X_t, X_e)
    if_node.set_input(Y.output(0), Y_t, None)
    if_node.set_input(Z.output(0), None, Z_e)
    if_node.set_output(then_body_res_1, else_body_res_1)
    if_node.set_output(then_body_res_2, else_body_res_2)

    return if_node
Пример #30
0
def test_node_factory_empty_topk_with_args_and_attrs():
    dtype = np.int32
    data = ov.parameter([2, 10], dtype=dtype, name="A")
    k = ov.constant(3, dtype=dtype, name="B")
    factory = NodeFactory("opset1")
    arguments = NodeFactory._arguments_as_outputs([data, k])
    node = factory.create("TopK", None, None)
    node.set_arguments(arguments)
    node.set_attribute("axis", 1)
    node.set_attribute("mode", "max")
    node.set_attribute("sort", "value")
    node.validate()

    assert node.get_type_name() == "TopK"
    assert node.get_output_size() == 2
    assert list(node.get_output_shape(0)) == [2, 3]