Пример #1
0
def two_ir_mode(args):
    core = get_plugin(args.device, args.l, args.config)
    ref_core = get_plugin(args.reference_device, args.l, args.reference_config)
    net = get_net(model=args.model, core=core)
    net_layers, net_inputs, net_outputs = get_model_info(net)
    ref_net = get_net(model=args.reference_model, core=ref_core)
    ref_net_layers, ref_net_inputs, ref_net_outputs = get_model_info(ref_net)
    log.info(f'{args.device} vs {args.reference_device}')
    log.info(f'IR for {args.device} : {args.model}')
    log.info(f'IR for {args.reference_device} : {args.reference_model}')
    out_layers = get_layers_list(net_layers, net_inputs, net_outputs, args.layers)
    ref_out_layers = get_layers_list(ref_net_layers, ref_net_inputs, ref_net_outputs, args.layers)
    print_input_layers(net_inputs)
    print_output_layers(out_layers)
    layers_map = manage_user_outputs_with_mapping(mapping=args.mapping, reference_mapping=args.reference_mapping,
                                                  user_layers=out_layers)
    inputs = input_processing(model_path=args.model, net_inputs=net_inputs, input_file=args.input,
                              layers_map=layers_map)
    ref_inputs = input_processing(model_path=args.reference_model, net_inputs=ref_net_inputs, input_file=args.input,
                                  layers_map=layers_map)
    global_accuracy = []
    global_times, ref_global_times = overall_accuracy_check(model=args.model, ref_model=args.reference_model,
                                                            out_layers=out_layers, ref_out_layers=ref_out_layers,
                                                            inputs=inputs, ref_inputs=ref_inputs, core=core,
                                                            device=args.device, ref_core=ref_core,
                                                            ref_device=args.reference_device, layers=args.layers,
                                                            num_of_iterations=args.num_of_iterations)
    for out_layer in layers_map:
        ref_out_layer = layers_map[out_layer]
        if out_layer == ref_out_layer:
            log.info(f'Layer {out_layer} statistics')
        else:
            log.info(f'Statistics \'{out_layer}\' vs \'{ref_out_layer}\'')
        net_copy = get_net_copy_with_output(model=args.model, output=out_layer, core=core)
        ref_net_copy = get_net_copy_with_output(model=args.reference_model, output=ref_out_layer, core=ref_core)
        results = infer(net=net_copy, core=core, device=args.device, inputs=inputs, output=[out_layer])
        if out_layer not in results:
            continue
        out_blob, pc = results[out_layer]
        ref_results = infer(net=ref_net_copy, core=ref_core, device=args.reference_device,
                            inputs=ref_inputs, output=[ref_out_layer])
        ref_out_blob, ref_pc = ref_results[ref_out_layer]
        if ref_out_layer not in ref_results:
            continue
        a_m = accuracy_metrics(out_blob=out_blob, ref_out_blob=ref_out_blob)
        performance_metrics(pc=pc, ref_pc=ref_pc)
        blob_counters(out_blob=out_blob, ref_out_blob=ref_out_blob)
        global_accuracy = update_global_accuracy_matrics(global_accuracy=global_accuracy, current_accuracy=a_m)
    print_all_over_the_net_metrics(global_times=global_times, ref_global_times=ref_global_times,
                                   global_accuracy=global_accuracy)
Пример #2
0
def load_mode(args):
    core = get_plugin(args.device, args.l, args.config)
    log.info(f'IR for {args.device} : {args.model}')
    log.info(f'Loading blob from {args.load}')
    net = get_net(model=args.model, core=core)
    net_layers, net_inputs, net_outputs = get_model_info(net)
    out_layers = get_layers_list(net_layers, net_inputs, net_outputs, args.layers)
    print_input_layers(net_inputs)
    print_output_layers(out_layers)
    layers_map = manage_user_outputs_with_mapping(mapping=args.mapping, reference_mapping=args.reference_mapping,
                                                  user_layers=out_layers)
    inputs = input_processing(args.model, net_inputs, args.input, layers_map)
    global_accuracy = []
    loaded = load_dump(args.load)
    for out_layer in layers_map:
        ref_out_layer = layers_map[out_layer]
        if out_layer == ref_out_layer:
            log.info(f'Layer {out_layer} statistics')
        else:
            log.info(f'Statistics \'{out_layer}\' vs \'{ref_out_layer}\'')
        net_copy = get_net_copy_with_output(model=args.model, output=out_layer, core=core)
        results = infer(net=net_copy, core=core, device=args.device, inputs=inputs, output=[out_layer])
        if out_layer not in results:
            continue
        out_blob, pc = results[out_layer]
        if ref_out_layer not in loaded:
            continue
        ref_out_blob = loaded[ref_out_layer]['blob']
        a_m = accuracy_metrics(out_blob=out_blob, ref_out_blob=ref_out_blob)
        if 'pc' in loaded[ref_out_layer]:
            ref_pc = loaded[ref_out_layer]['pc']
            performance_metrics(pc=pc, ref_pc=ref_pc)
        blob_counters(out_blob=out_blob, ref_out_blob=ref_out_blob)
        global_accuracy = update_global_accuracy_matrics(global_accuracy=global_accuracy, current_accuracy=a_m)
    print_all_over_the_net_metrics(global_accuracy=global_accuracy)
Пример #3
0
def dump_mode(args):
    core = get_plugin(args.device, args.l, args.config)
    model = get_model(model_path=args.model, core=core)
    model_ops, model_inputs, model_outputs = get_model_info(model)
    out_ops = get_ops_list(model_ops, model_outputs, args.layers)
    inputs = input_processing(args.model, model_inputs, args.input)
    dump_dict = defaultdict(list)
    for op in out_ops:
        for i in range(op.get_output_size()):
            if op.get_output_size() > 1:
                log.info(f'Layer {op.friendly_name}, port {i} processing')
            else:
                log.info(f'Layer {op.friendly_name} processing')
            model_copy, new_output = get_model_copy_with_output(
                model=args.model, output=(op.friendly_name, i), core=core)
            out_tensor, pc = infer(model=model_copy,
                                   core=core,
                                   device=args.device,
                                   inputs=inputs,
                                   output=new_output)
            dump_dict[op.friendly_name].append(
                np.array({
                    'tensor': out_tensor,
                    'pc': perf_counts_to_dump(pc)
                }))
    dump_dict["device"] = args.device
    dump_output_file(args.model + '_' + args.device + '_dump.npz', dump_dict)
Пример #4
0
def one_ir_mode(args):
    core = get_plugin(args.device, args.l, args.config)
    net = get_net(model=args.model, core=core)
    net_layers, net_inputs, net_outputs = get_model_info(net)
    log.info(f'{args.device} vs {args.reference_device}')
    log.info(f'The same IR on both devices: {args.model}')
    out_layers = get_layers_list(net_layers, net_inputs, net_outputs,
                                 args.layers)
    print_input_layers(net_inputs)
    print_output_layers(out_layers)
    ref_core = get_plugin(args.reference_device, args.l, args.reference_config)
    global_accuracy = []
    inputs = input_processing(model_path=args.model,
                              net_inputs=net_inputs,
                              input_file=args.input)
    global_times, ref_global_times = overall_accuracy_check(
        model=args.model,
        ref_model=args.model,
        out_layers=out_layers,
        ref_out_layers=out_layers,
        inputs=inputs,
        ref_inputs=inputs,
        core=core,
        device=args.device,
        ref_core=ref_core,
        ref_device=args.reference_device,
        layers=args.layers,
        num_of_iterations=args.num_of_iterations)
    for out_layer in out_layers:
        log.info(f'Layer {out_layer} statistics')
        net_copy = get_net_copy_with_output(model=args.model,
                                            output=out_layer,
                                            core=core)
        results = infer(net=net_copy,
                        core=core,
                        device=args.device,
                        inputs=inputs,
                        output=[out_layer])
        if out_layer not in results:
            continue
        out_blob, pc = results[out_layer]
        ref_results = infer(net=net_copy,
                            core=ref_core,
                            device=args.reference_device,
                            inputs=inputs,
                            output=[out_layer])
        if out_layer not in ref_results:
            continue
        ref_out_blob, ref_pc = ref_results[out_layer]
        a_m = accuracy_metrics(out_blob=out_blob, ref_out_blob=ref_out_blob)
        performance_metrics(pc=pc, ref_pc=ref_pc)
        blob_counters(out_blob=out_blob, ref_out_blob=ref_out_blob)
        global_accuracy = update_global_accuracy_matrics(
            global_accuracy=global_accuracy, current_accuracy=a_m)
    print_all_over_the_net_metrics(global_times=global_times,
                                   ref_global_times=ref_global_times,
                                   global_accuracy=global_accuracy)
Пример #5
0
def one_ir_mode(args):
    core = get_plugin(args.device, args.l, args.config)
    model = get_model(model_path=args.model, core=core)
    model_ops, model_inputs, model_outputs = get_model_info(model)
    log.info(f'{args.device} vs {args.reference_device}')
    log.info(f'The same IR on both devices: {args.model}')
    out_ops = get_ops_list(model_ops, model_outputs, args.layers)
    print_inputs(model_inputs)
    print_output_ops(out_ops)
    ref_core = get_plugin(args.reference_device, args.l, args.reference_config)
    global_accuracy = []
    inputs = input_processing(model_path=args.model,
                              model_inputs=model_inputs,
                              input_file=args.input)
    global_times, ref_global_times = overall_accuracy_check(
        model=args.model,
        ref_model=args.model,
        out_ops=out_ops,
        ref_out_ops=out_ops,
        inputs=inputs,
        ref_inputs=inputs,
        core=core,
        device=args.device,
        ref_core=ref_core,
        ref_device=args.reference_device,
        layers=args.layers,
        num_of_iterations=args.num_of_iterations)
    for op in out_ops:
        log.info(f'Layer {op.friendly_name} statistics')
        for i in range(op.get_output_size()):
            if op.get_output_size() > 1:
                log.info(f'Port {i}: ')
            model_copy, new_output = get_model_copy_with_output(
                model=args.model, output=(op.friendly_name, i), core=core)
            out_tensor, pc = infer(model=model_copy,
                                   core=core,
                                   device=args.device,
                                   inputs=inputs,
                                   output=new_output)
            ref_out_tensor, ref_pc = infer(model=model_copy,
                                           core=ref_core,
                                           device=args.reference_device,
                                           inputs=inputs,
                                           output=new_output)
            a_m = accuracy_metrics(out_tensor, ref_out_tensor)
            performance_metrics(args.device, pc, args.reference_device, ref_pc)
            tensor_counters(out_tensor, ref_out_tensor)
            global_accuracy = update_global_accuracy_matrics(
                global_accuracy=global_accuracy, current_accuracy=a_m)
    print_all_over_the_net_metrics(global_times=global_times,
                                   ref_global_times=ref_global_times,
                                   global_accuracy=global_accuracy)
Пример #6
0
def dump_mode(args):
    core = get_plugin(args.device, args.l, args.config)
    net = get_net(model=args.model, core=core)
    func = ng.function_from_cnn(net)
    ops = func.get_ops()
    out_layers = get_layers_list(ops, net.input_info, net.outputs, args.layers)
    inputs = input_processing(args.model, net.input_info, args.input)
    dump_dict = {}
    for out_layer in out_layers:
        log.info(f'Layer {out_layer} processing')
        net_copy = get_net_copy_with_output(model=args.model, output=out_layer, core=core)
        results = infer(net=net_copy, core=core, device=args.device, inputs=inputs, output=[out_layer])
        if out_layer not in results:
            continue
        out_blob, pc = results[out_layer]
        dump_dict[out_layer] = np.array({'blob': out_blob, 'pc': pc})
    dump_output_file(args.model + '_' + args.device + '_dump.npz', dump_dict)
Пример #7
0
def load_mode(args):
    core = get_plugin(args.device, args.l, args.config)
    log.info(f'IR for {args.device} : {args.model}')
    log.info(f'Loading tensors from {args.load}')
    model = get_model(model_path=args.model, core=core)
    model_ops, model_inputs, model_outputs = get_model_info(model)
    out_ops = get_ops_list(model_ops, model_outputs, args.layers)
    print_inputs(model_inputs)
    print_output_ops(out_ops)
    inputs = input_processing(args.model, model_inputs, args.input)
    global_accuracy = []
    loaded = load_dump(args.load)
    for op in out_ops:
        if op.friendly_name in loaded:
            log.info(f'Layer {op.friendly_name} statistics')
        else:
            log.info(
                f'Statistics for layer \'{op.friendly_name}\' was not dumped. Skipping this layer.'
            )
            continue
        for i in range(op.get_output_size()):
            if op.get_output_size() > 1:
                log.info(f'Port {i}: ')
            model_copy, new_output = get_model_copy_with_output(
                model=args.model, output=(op.friendly_name, i), core=core)
            out_tensor, pc = infer(model=model_copy,
                                   core=core,
                                   device=args.device,
                                   inputs=inputs,
                                   output=new_output)
            ref_out_tensor, ref_pc = loaded[
                op.friendly_name][i]['tensor'], load_profiling_info(
                    loaded[op.friendly_name][i]['pc'])
            a_m = accuracy_metrics(out_tensor, ref_out_tensor)
            performance_metrics(args.device, pc, loaded["device"], ref_pc)
            tensor_counters(out_tensor, ref_out_tensor)
            global_accuracy = update_global_accuracy_matrics(
                global_accuracy=global_accuracy, current_accuracy=a_m)
    print_all_over_the_net_metrics(global_accuracy=global_accuracy)
Пример #8
0
def two_ir_mode(args):
    core = get_plugin(args.device, args.l, args.config)
    ref_core = get_plugin(args.reference_device, args.l, args.reference_config)
    model = get_model(model_path=args.model, core=core)
    model_ops, model_inputs, model_outputs = get_model_info(model)
    ref_model = get_model(model_path=args.reference_model, core=ref_core)
    ref_model_ops, _, _ = get_model_info(ref_model)
    check_inputs_and_default_outputs_are_equal(model, ref_model)
    log.info(f'{args.device} vs {args.reference_device}')
    log.info(f'IR for {args.device} : {args.model}')
    log.info(f'IR for {args.reference_device} : {args.reference_model}')
    if args.reference_layers:
        out_ops = get_ops_list(model_ops, model_outputs, args.layers)
        ref_out_ops = get_ops_list(ref_model_ops, model_outputs,
                                   args.reference_layers)
        if len(out_ops) != len(ref_out_ops):
            raise Exception(
                "Number of layers to compare against should be equal!")
    else:
        ref_out_ops = out_ops = get_ops_list(
            get_ops_intersection(model_ops, ref_model_ops), model_outputs,
            args.layers)
    print_inputs(model_inputs)
    print_output_ops(get_ops_union(out_ops, ref_out_ops))
    inputs = input_processing(model_path=args.model,
                              model_inputs=model_inputs,
                              input_file=args.input)
    global_accuracy = []
    global_times, ref_global_times = overall_accuracy_check(
        model=args.model,
        ref_model=args.reference_model,
        out_ops=out_ops,
        ref_out_ops=out_ops,
        inputs=inputs,
        ref_inputs=inputs,
        core=core,
        device=args.device,
        ref_core=ref_core,
        ref_device=args.reference_device,
        layers=args.layers,
        num_of_iterations=args.num_of_iterations)
    for op, ref_op in zip(out_ops, ref_out_ops):
        if op.friendly_name == ref_op.friendly_name:
            log.info(f'Layer {op.friendly_name} statistics')
        else:
            if op.get_output_size() != ref_op.get_output_size():
                log.warning(
                    f"Skipping {op.friendly_name} vs {ref_op.frinedly_name} comparison due to different number of outputs!"
                )
                continue
            log.info(
                f'Layer {op.friendly_name} vs {ref_op.friendly_name} statistics'
            )
        for i in range(op.get_output_size()):
            if op.get_output_size() > 1:
                log.info(f'Port {i}: ')
            model_copy, new_output = get_model_copy_with_output(
                model=args.model, output=(op.friendly_name, i), core=core)
            ref_model_copy, ref_new_output = get_model_copy_with_output(
                model=args.reference_model,
                output=(ref_op.friendly_name, i),
                core=ref_core)
            out_tensor, pc = infer(model=model_copy,
                                   core=core,
                                   device=args.device,
                                   inputs=inputs,
                                   output=new_output)
            ref_out_tensor, ref_pc = infer(model=ref_model_copy,
                                           core=ref_core,
                                           device=args.reference_device,
                                           inputs=inputs,
                                           output=ref_new_output)
            a_m = accuracy_metrics(out_tensor, ref_out_tensor)
            performance_metrics(args.device, pc, args.reference_device, ref_pc)
            tensor_counters(out_tensor, ref_out_tensor)
            global_accuracy = update_global_accuracy_matrics(
                global_accuracy=global_accuracy, current_accuracy=a_m)
    print_all_over_the_net_metrics(global_times=global_times,
                                   ref_global_times=ref_global_times,
                                   global_accuracy=global_accuracy)