def replace_identityN(node: Node): graph = node.graph name = node.soft_get('name', node.id) assert node.has_valid( 'data_types'), 'IdentityN {} has no `data_types` attribute'.format( name) dtypes = node.data_types for idx, port in node.in_ports().items(): if not node.is_in_port_connected( idx) or not node.is_out_port_connected(idx): # ATTENTION section in the description above continue assert idx < len( dtypes ), 'IdentityN {} has inconsistent `data_types` attribute {}'.format( name, dtypes) identity = Identity(graph, { 'name': '{}/{}_port'.format(name, idx), 'data_type': dtypes[idx] }).create_node() port.get_connection().set_destination(identity.in_port(0)) node.out_port(idx).get_connection().set_source( identity.out_port(0)) # ATTENTION section in the description above for in_port in node.in_ports().values(): in_port.disconnect() for out_port in node.out_ports().values(): out_port.disconnect()
def replace_sub_graph(self, graph: Graph, match: dict): node = match['op'] identity = Identity(graph, {'name': node.soft_get('name', node.id)}).create_node() node.in_port(0).get_connection().set_destination(identity.in_port(0)) for idx, port in node.out_ports().items(): port.get_connection().set_source(identity.out_port(0))
def extract(cls, node): # some Dropout flavors doesn't have is_test attribute; when it is missing, interpret it as 1 is_test = onnx_attr(node, 'is_test', 'i', 1) if len(node.out_nodes()) > 1: raise Error('Dropout node {} has more than one consumer. Unsupported.', node.name) if not is_test: raise Error('Dropout node {} has is_test: 0. This means training mode which is not supported.', node.name) Identity.update_node_stat(node) return cls.enabled
def extract(cls, node): pb = node.parameters collect_until_token(pb, b'<Dim>') dim = read_binary_integer32_token(pb) collect_until_token(pb, b'<BlockDim>') block_dim = read_binary_integer32_token(pb) collect_until_token(pb, b'<TimePeriod>') time_period = read_binary_integer32_token(pb) collect_until_token(pb, b'<DropoutProportion>') dropout_proporion = read_binary_float_token(pb) # collect_until_token(pb, b'<Continuous>') Identity.update_node_stat(node, {}) return cls.enabled
def extract(cls, node): Identity.update_node_stat(node) return cls.enabled
def replace_pattern(graph: Graph, match: dict): log.debug('================== SimpleConditionFind ===============') # init_1 init_1 = match['init_1_data'].value assert init_1 is not None init_1 = int(init_1) # step_1 assert match['add_1_y_data'].value is not None step_1 = int(match['add_1_y_data'].value) match['loop_cond_data'].value = None # compute destination (or consumer) ports for time node identity_node_name = match['Identity_1'].soft_get( 'name', match['Identity_1'].id) time_dsts = match['Identity_1'].out_port(0).get_destinations() # Create condition node and delete all useless nodes from condition pattern condition_attrs = dict(iter=dict(init=init_1, step=step_1), name=match['loop_cond'].name + '/TensorIteratorCondition_') condition = TensorIteratorCondition(graph, attrs=condition_attrs) condition.create_node_with_data( inputs=[match['Strided_slice_data']], data_nodes=[match['loop_cond_data'], match['Identity_1_data']]) safe_nodes = [ 'loop_cond_data', 'Identity_1_data', 'Strided_slice', 'Strided_slice_data' ] # check if time node has other consumers different from increment node, # input slicing and output concatenation nodes other_time_consumers = False for time_consumer in time_dsts: if time_consumer.node.soft_get('op') not in ['TensorIteratorInput', 'TensorIteratorOutput'] and \ time_consumer.node.id != match['add_1'].id: other_time_consumers = True break if other_time_consumers: # save time related nodes since they have other consumers different from # input slicing and output concatenation nodes safe_nodes += [ 'init_1', 'init_1_data', 'Enter_1', 'Enter_1_data', 'Merge_1', 'Merge_1_data', 'Switch_1', 'Switch_1_data', 'add_1', 'add_1_y', 'add_1_y_data', 'add_1_data', 'NextIteration_1' ] switch_node = match['Switch_1'] new_identity_node = Identity( graph, dict(name=identity_node_name)).create_node() switch_node.out_port(1).connect(new_identity_node.in_port(0)) # make the graph consistent to avoid multiple producers by the same input port graph.remove_nodes_from([match['Identity_1'].id]) rename_nodes([(new_identity_node, identity_node_name)]) for time_consumer in time_dsts: if time_consumer.node.soft_get('op') not in [ 'TensorIteratorInput', 'TensorIteratorOutput' ]: time_consumer.get_connection().set_source( new_identity_node.out_port(0)) # Delete useless nodes nodes_for_remove = [] for node in match.keys(): if node not in safe_nodes: nodes_for_remove.append(match[node].id) graph.remove_nodes_from(nodes_for_remove)
def extract(cls, node: Node): Identity.update_node_stat(node, {'op': 'StopGradient'}) return cls.enabled
def extract(cls, node: Node): Identity.update_node_stat( node, { 'data_type': tf_dtype_extractor(node.pb.attr["T"].type), }) return cls.enabled