Пример #1
0
def kmedoidsWithScores(filenameData, filenameSilhMean, filenameDBS,
                       filenameCHS, kClusters):
    data = read_sample(str(root) + '\\' + filenameData)

    #kClusters = canoc(data, kmin, kmax)

    initial_medoids = randomCenters(len(data), kClusters)
    kmedoids_instance = kmedoids(data, initial_medoids, metric=metricResearch)

    kmedoids_instance.process()
    clusters = kmedoids_instance.get_clusters()
    predicted = kmedoids_instance.predict(data)

    silhouetteScore = silhouette(data, clusters).process().get_score()
    meanSilhouetteScore = np.mean(silhouetteScore)
    witTXT(meanSilhouetteScore,
           filenameSilhMean,
           filepath=root,
           note='k: ' + str(kClusters))

    dbsScore = dbs(data, predicted)
    witTXT(dbsScore, filenameDBS, filepath=root, note='k: ' + str(kClusters))

    chsScore = chs(data, predicted)
    witTXT(chsScore, filenameCHS, filepath=root, note='k: ' + str(kClusters))
Пример #2
0
def kmedoidsWithScores(filenameData, filenameSilhMean, nameDBS, nameCHS,
                       kClusters, measure):
    path = pathlib.Path(str(root) + '\\' + filenameData)
    if path.is_file():
        data = read_sample(path)

        clusters, predicted = kmedoidsRun(data, kClusters, measure)

        meanSilhouetteScore = meanSilh(data, clusters)
        witTXT(meanSilhouetteScore,
               filenameSilhMean,
               filepath=root,
               note=filenameData + " k: " + str(kClusters))

        dbsScore = dbs(data, predicted)
        witTXT(dbsScore,
               nameDBS,
               filepath=root,
               note=filenameData + " k: " + str(kClusters))

        chsScore = chs(data, predicted)
        witTXT(chsScore,
               nameCHS,
               filepath=root,
               note=filenameData + " k: " + str(kClusters))