def extract_dataset(dataset, config, cv, out_dir):
    """Save dataset npys into a directory"""
    dataset_module = py_utils.import_module(pre_path=config.dataset_classes,
                                            module=dataset)
    dataset_module = dataset_module.data_processing()
    (train_data, _, _) = py_utils.get_data_pointers(
        dataset=dataset_module.output_name,
        base_dir=
        "/media/data_cifs/cluttered_nist_experiments/tf_records",  # config.tf_records,
        local_dir=
        "/media/data_cifs/cluttered_nist_experiments/tf_records",  # config.local_tf_records,
        cv=cv)
    train_images, train_labels, train_aux = data_loader.inputs(
        dataset=train_data,
        batch_size=1000,  # config.train_batch_size,
        model_input_image_size=dataset_module.model_input_image_size,
        tf_dict=dataset_module.tf_dict,
        data_augmentations=[],  # config.train_augmentations,
        num_epochs=1,  # config.epochs,
        aux=None,  # train_aux_loss,
        tf_reader_settings=dataset_module.tf_reader,
        shuffle=False)  # config.shuffle_train)
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    sess.run(
        tf.group(tf.global_variables_initializer(),
                 tf.local_variables_initializer()))
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    count = 0
    try:
        while not coord.should_stop():
            images, labels = sess.run([train_images, train_labels])
            np.savez(os.path.join(out_dir, "{}".format(count)),
                     images=images,
                     labels=labels)
            count += 1
    except tf.errors.OutOfRangeError:
        print("Finished loop")
    finally:
        coord.request_stop()
    coord.join(threads)
    sess.close()
Пример #2
0
def plot_fits(
        experiment='760_cells_2017_11_04_16_29_09',
        query_db=False,
        num_models=3,
        template_exp='ALLEN_selected_cells_1',
        process_pnodes=False):
    """Plot fits across the RF.
    experiment: Name of Allen experiment you're plotting.
    query_db: Use data from DB versus data in Numpys.
    num_models: The number of architectures you're testing.
    template_exp: The name of the contextual_circuit model template used."""

    if process_pnodes:
        from pnodes_declare_datasets_loop import query_hp_hist, sel_exp_query
    else:
        from declare_datasets_loop import query_hp_hist, sel_exp_query

    main_config = Allen_Brain_Observatory_Config()
    sys.path.append(main_config.cc_path)
    from db import credentials
    from ops import data_loader
    db_config = credentials.postgresql_connection()
    files = glob(
        os.path.join(
            main_config.multi_exps,
            experiment, '*.npz'))
    out_data, xs, ys = [], [], []
    perfs, model_types, exps, arg_perf = [], [], [], []
    count = 0
    for f in files:
        data = np.load(f)
        d = {
            'x': data['rf_data'].item()['on_center_x'],
            'y': data['rf_data'].item()['on_center_y'],
            # x: files['dataset_method'].item()['x_min'],
            # y: files['dataset_method'].item()['y_min'],
        }
        exp_name = {
            'experiment_name': data['dataset_method'].item()[
                'experiment_name']}
        if query_db:
            perf = query_hp_hist(
                exp_name['experiment_name'],
                db_config=db_config)
            if perf is None:
                print 'No fits for: %s' % exp_name['experiment_name']
            else:
                raise NotImplementedError
                d['perf'] = perf
                d['max_val'] = np.max(perf)
                out_data += [d]
                xs += [np.round(d['x'])]
                ys += [np.round(d['y'])]
                perfs += [np.max(d['perf'])]
                count += 1
        else:
            data_files = glob(
                os.path.join(
                    main_config.ccbp_exp_evals,
                    exp_name['experiment_name'],
                    '*val_losses.npy'))  # Scores has preds, labels has GT
            for gd in data_files:
                mt = gd.split(
                    os.path.sep)[-1].split(
                        template_exp + '_')[-1].split('_' + 'val')[0]
                it_data = np.load(gd).item()
                sinds = np.asarray(it_data.keys())[np.argsort(it_data.keys())]
                sit_data = [it_data[idx] for idx in sinds]
                d['perf'] = sit_data
                d['max_val'] = np.max(sit_data)
                d['max_idx'] = np.argmax(sit_data)
                d['mt'] = mt
                out_data += [d]
                xs += [np.round(d['x'])]
                ys += [np.round(d['y'])]
                perfs += [np.max(sit_data)]
                arg_perf += [np.argmax(sit_data)]
                exps += [gd.split(os.path.sep)[-2]]
                model_types += [mt]
                count += 1

    # Package as a df
    xs = np.round(np.asarray(xs)).astype(int)
    ys = np.round(np.asarray(ys)).astype(int)
    perfs = np.asarray(perfs)
    arg_perf = np.asarray(arg_perf)
    exps = np.asarray(exps)
    model_types = np.asarray(model_types)

    # Filter to only keep top-scoring values at each x/y (dirty trick)
    fxs, fys, fperfs, fmodel_types, fexps, fargs = [], [], [], [], [], []
    xys = np.vstack((xs, ys)).transpose()
    cxy = np.ascontiguousarray(  # Unique rows
        xys).view(
        np.dtype((np.void, xys.dtype.itemsize * xys.shape[1])))
    _, idx = np.unique(cxy, return_index=True)
    uxys = xys[idx]
    for xy in uxys:
        sel_idx = (xys == xy).sum(axis=-1) == 2
        sperfs = perfs[sel_idx]
        sexps = exps[sel_idx]
        sargs = arg_perf[sel_idx]
        sel_mts = model_types[sel_idx]
        bp = np.argmax(sperfs)
        fxs += [xy[0]]
        fys += [xy[1]]
        fperfs += [sperfs[bp]]
        fargs += [sargs[bp]]
        fmodel_types += [sel_mts[bp]]
        fexps += [sexps[bp]]
    xs = np.asarray(fxs)
    ys = np.asarray(fys)
    perfs = np.asarray(fperfs)
    arg_perf = np.asarray(fargs)
    exps = np.asarray(fexps)
    model_types = np.asarray(fmodel_types)
    umt, model_types_inds = np.unique(model_types, return_inverse=True)

    # Get weights for the top-n fitting models of each type
    top_n = 1
    target_layer = 'conv2d'
    it_perfs = perfs[model_types == target_layer]
    it_exps = exps[model_types == target_layer]
    # it_args = arg_perf[model_types == target_layer]
    sorted_perfs = np.argsort(it_perfs)[::-1][:top_n]
    for idx in sorted_perfs:
        perf = sel_exp_query(
            experiment_name=it_exps[idx],
            model=target_layer,
            db_config=db_config)
        # perf_steps = np.argsort([v['training_step'] for v in perf])[::-1]
        perf_steps = [v['validation_loss'] for v in perf]
        max_score = np.max(perf_steps)
        arg_perf_steps = np.argmax(perf_steps)
        sel_model = perf[arg_perf_steps]  # perf_steps[it_args[idx]]]
        print 'Using %s' % sel_model
        model_file = sel_model['ckpt_file'].split('.')[0]
        model_ckpt = '%s.ckpt-%s' % (
            model_file,
            model_file.split(os.path.sep)[-1].split('_')[-1])
        model_meta = '%s.meta' % model_ckpt
        import ipdb;ipdb.set_trace()
        # Pull stimuli
        stim_dir = os.path.join(
            main_config.tf_record_output, 
            sel_model['experiment_name'])
        stim_files = glob(os.path.join(stim_dir, '*'))
        stim_meta_file = [x for x in stim_files if 'meta' in x]
        stim_val_data = [x for x in stim_files if 'val.tfrecords' in x]
        stim_val_mean = [x for x in stim_files if 'val_means' in x]
        stim_meta_data = np.load(stim_meta_file).item()

        # Store sparse noise for reference
        sparse_rf_on = {
            'center_x': stim_meta_data['on_center_x'],
            'center_y': stim_meta_data['on_center_y'],
            'width_x': stim_meta_data['on_width_x'],
            'width_y': stim_meta_data['on_width_y'],
            'distance': stim_meta_data['on_distance'],
            'area': stim_meta_data['on_area'],
            'rotation': stim_meta_data['on_rotation'],
        }
        sparse_rf_off = {
            'center_x': stim_meta_data['off_center_x'],
            'center_y': stim_meta_data['off_center_y'],
            'width_x': stim_meta_data['off_width_x'],
            'width_y': stim_meta_data['off_width_y'],
            'distance': stim_meta_data['off_distance'],
            'area': stim_meta_data['off_area'],
            'rotation': stim_meta_data['off_rotation'],
        }   
        sparse_rf = {'on': sparse_rf_on, 'off': sparse_rf_off}

        # Pull responses
        val_images, val_labels = data_loader.inputs(
            dataset=stim_val_data,
            batch_size=config.batch_size,
            model_input_image_size=dataset_module.model_input_image_size,
            tf_dict=dataset_module.tf_dict,
            data_augmentations=config.data_augmentations,
            num_epochs=config.epochs,
            tf_reader_settings=dataset_module.tf_reader,
            shuffle=config.shuffle
        )
        
        # Mean normalize


        if target_layer == 'DoG':
            pass
        else:
            with tf.Session() as sess:
                saver = tf.train.import_meta_graph(
                    model_meta,
                    clear_devices=True)
                saver.restore(sess, model_ckpt)
                if target_layer == 'conv2d':
                    fname = [
                        x for x in tf.global_variables()
                        if 'conv1_1_filters:0' in x.name]
                elif target_layer == 'sep_conv2d':
                    fname = [
                        x for x in tf.global_variables()
                        if 'sep_conv1_1_filters:0' in x.name]
                filts = sess.run(fname)
            import ipdb;ipdb.set_trace()
            save_mosaic(
                maps=filts[0].squeeze().transpose(2, 0, 1),
                output='%s_filters' % target_layer,
                rc=8,
                cc=4,
                title='%s filters for cell where rho=%s' % (
                    target_layer,
                    np.around(max_score, 2)))
Пример #3
0
def train_classifier_on_model(train_pointer, model_type, model_weights,
                              selected_layer, config):

    # Make output directories if they do not exist
    dt_stamp = '%s_%s_%s_%s' % (model_type, selected_layer, str(
        config.lr)[2:], re.split('\.', str(datetime.now()))[0].replace(
            ' ', '_').replace(':', '_').replace('-', '_'))
    config.checkpoint_directory = os.path.join(config.checkpoint_directory,
                                               dt_stamp)  # timestamp this run
    dir_list = [config.checkpoint_directory]
    [utilities.make_dir(d) for d in dir_list]

    print '-' * 60
    print 'Training %s over a %s. Saving to %s' % (config.classifier,
                                                   model_type, dt_stamp)
    print '-' * 60

    dcn_flavor = import_cnn(model_type)

    # Prepare data on CPU
    with tf.device('/cpu:0'):
        train_images, train_labels, train_files = inputs(
            train_pointer,
            config.train_batch,
            config.train_image_size,
            config.model_image_size[:2],
            num_epochs=config.epochs,
            shuffle_batch=True)

    # Prepare pretrained model on GPU
    with tf.device('/gpu:0'):
        with tf.variable_scope('cnn'):
            if 'ckpt' in model_weights:
                cnn = dcn_flavor.model()
            else:
                cnn = dcn_flavor.model(weight_path=model_weights)
            cnn.build(train_images)
            sample_layer = cnn[selected_layer]
            class_accuracy = tf_loss.class_accuracy(cnn.prob, train_labels)

    saver = tf.train.Saver(tf.all_variables(), max_to_keep=10)

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(tf.initialize_all_variables(),
                 tf.initialize_local_variables()))
    # Set up exemplar threading
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Start training loop
    np.save(os.path.join(config.checkpoint_directory, 'training_config_file'),
            config)
    step, scores, labs = 0, [], []
    if 'ckpt' in model_weights:
        saver.restore(sess, model_weights)
    try:
        print 'Getting scores'
        while not coord.should_stop():
            import ipdb
            ipdb.set_trace()
            start_time = time.time()
            score, lab, acc = sess.run(
                [sample_layer, train_labels, class_accuracy])
            scores += [score]
            labs += [lab]
            duration = time.time() - start_time
            # End iteration
            print_status(step, 1, config, duration, acc, '')
            step += 1
    except tf.errors.OutOfRangeError:
        print 'Finished extracting scores.'
    finally:
        coord.request_stop()

    X = np.concatenate(scores)
    y = np.concatenate(labs)
    mu = np.mean(X, axis=0)
    sd = np.std(X, axis=0)
    X = (X - mu) / sd
    svc = svm.LinearSVC(dual=False, C=config.c, verbose=True).fit(X, y)
    ckpt_path = os.path.join(config.checkpoint_directory,
                             'model_%s.pkl' % step)
    with open(ckpt_path, 'wb') as fid:
        cPickle.dump(svc, fid)
    norm_path = os.path.join(config.checkpoint_directory,
                             'model_%s_normalization' % step)
    np.savez(norm_path, mu=mu, sd=sd, scores=scores, labs=labs)
    print 'Saved to: %s' % config.checkpoint_directory
    print 'Saved checkpoint to: %s' % ckpt_path
    coord.join(threads)
    sess.close()
    # Return the final checkpoint for testing
    return ckpt_path, config.checkpoint_directory
Пример #4
0
def main(experiment_name, list_experiments=False, gpu_device='/gpu:0'):
    """Create a tensorflow worker to run experiments in your DB."""
    if list_experiments:
        exps = db.list_experiments()
        print '_' * 30
        print 'Initialized experiments:'
        print '_' * 30
        for l in exps:
            print l.values()[0]
        print '_' * 30
        print 'You can add to the DB with: '\
            'python prepare_experiments.py --experiment=%s' % \
            exps[0].values()[0]
        return
    if experiment_name is None:
        print 'No experiment specified. Pulling one out of the DB.'
        experiment_name = db.get_experiment_name()

    # Prepare to run the model
    config = Config()
    condition_label = '%s_%s' % (experiment_name, py_utils.get_dt_stamp())
    experiment_label = '%s' % (experiment_name)
    log = logger.get(os.path.join(config.log_dir, condition_label))
    experiment_dict = experiments.experiments()[experiment_name]()
    config = add_to_config(d=experiment_dict, config=config)  # Globals
    config, exp_params = process_DB_exps(
        experiment_name=experiment_name, log=log,
        config=config)  # Update config w/ DB params
    dataset_module = py_utils.import_module(model_dir=config.dataset_info,
                                            dataset=config.dataset)
    dataset_module = dataset_module.data_processing()  # hardcoded class name
    train_data, train_means = get_data_pointers(
        dataset=config.dataset,
        base_dir=config.tf_records,
        cv=dataset_module.folds.keys()[1],  # TODO: SEARCH FOR INDEX.
        log=log)
    val_data, val_means = get_data_pointers(dataset=config.dataset,
                                            base_dir=config.tf_records,
                                            cv=dataset_module.folds.keys()[0],
                                            log=log)

    # Initialize output folders
    dir_list = {
        'checkpoints':
        os.path.join(config.checkpoints, condition_label),
        'summaries':
        os.path.join(config.summaries, condition_label),
        'condition_evaluations':
        os.path.join(config.condition_evaluations, condition_label),
        'experiment_evaluations':
        os.path.join(  # DEPRECIATED
            config.experiment_evaluations, experiment_label),
        'visualization':
        os.path.join(config.visualizations, condition_label),
        'weights':
        os.path.join(config.condition_evaluations, condition_label, 'weights')
    }
    [py_utils.make_dir(v) for v in dir_list.values()]

    # Prepare data loaders on the cpu
    config.data_augmentations = py_utils.flatten_list(
        config.data_augmentations, log)
    with tf.device('/cpu:0'):
        train_images, train_labels = data_loader.inputs(
            dataset=train_data,
            batch_size=config.batch_size,
            model_input_image_size=dataset_module.model_input_image_size,
            tf_dict=dataset_module.tf_dict,
            data_augmentations=config.data_augmentations,
            num_epochs=config.epochs,
            tf_reader_settings=dataset_module.tf_reader,
            shuffle=config.shuffle)
        val_images, val_labels = data_loader.inputs(
            dataset=val_data,
            batch_size=config.batch_size,
            model_input_image_size=dataset_module.model_input_image_size,
            tf_dict=dataset_module.tf_dict,
            data_augmentations=config.data_augmentations,
            num_epochs=config.epochs,
            tf_reader_settings=dataset_module.tf_reader,
            shuffle=config.shuffle)
    log.info('Created tfrecord dataloader tensors.')

    # Load model specification
    struct_name = config.model_struct.split(os.path.sep)[-1]
    try:
        model_dict = py_utils.import_module(
            dataset=struct_name,
            model_dir=os.path.join('models', 'structs',
                                   experiment_name).replace(os.path.sep, '.'))
    except IOError:
        print 'Could not find the model structure: %s' % experiment_name

    # Inject model_dict with hyperparameters if requested
    model_dict.layer_structure = hp_opt_utils.inject_model_with_hps(
        layer_structure=model_dict.layer_structure, exp_params=exp_params)

    # Prepare model on GPU
    with tf.device(gpu_device):
        with tf.variable_scope('cnn') as scope:

            # Training model
            if len(dataset_module.output_size) > 1:
                log.warning('Found > 1 dimension for your output size.'
                            'Converting to a scalar.')
                dataset_module.output_size = np.prod(
                    dataset_module.output_size)

            if hasattr(model_dict, 'output_structure'):
                # Use specified output layer
                output_structure = model_dict.output_structure
            else:
                output_structure = None
            model = model_utils.model_class(
                mean=train_means,
                training=True,
                output_size=dataset_module.output_size)
            train_scores, model_summary = model.build(
                data=train_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            log.info('Built training model.')
            log.debug(json.dumps(model_summary, indent=4), verbose=0)
            print_model_architecture(model_summary)

            # Prepare the loss function
            train_loss, _ = loss_utils.loss_interpreter(
                logits=train_scores,
                labels=train_labels,
                loss_type=config.loss_function,
                dataset_module=dataset_module)

            # Add weight decay if requested
            if len(model.regularizations) > 0:
                train_loss = loss_utils.wd_loss(
                    regularizations=model.regularizations,
                    loss=train_loss,
                    wd_penalty=config.regularization_strength)
            train_op = loss_utils.optimizer_interpreter(
                loss=train_loss,
                lr=config.lr,
                optimizer=config.optimizer,
                constraints=config.optimizer_constraints,
                model=model)
            log.info('Built training loss function.')

            train_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,
                pred=train_scores,
                labels=train_labels)  # training accuracy
            if int(train_images.get_shape()[-1]) <= 3:
                tf.summary.image('train images', train_images)
            tf.summary.scalar('training loss', train_loss)
            tf.summary.scalar('training accuracy', train_accuracy)
            log.info('Added training summaries.')

            # Validation model
            scope.reuse_variables()
            val_model = model_utils.model_class(
                mean=val_means,
                training=True,
                output_size=dataset_module.output_size)
            val_scores, _ = val_model.build(  # Ignore summary
                data=val_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            log.info('Built validation model.')

            val_loss, _ = loss_utils.loss_interpreter(
                logits=val_scores,
                labels=val_labels,
                loss_type=config.loss_function,
                dataset_module=dataset_module)
            val_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,
                pred=val_scores,
                labels=val_labels)  # training accuracy
            if int(train_images.get_shape()[-1]) <= 3:
                tf.summary.image('val images', val_images)
            tf.summary.scalar('validation loss', val_loss)
            tf.summary.scalar('validation accuracy', val_accuracy)
            log.info('Added validation summaries.')

    # Set up summaries and saver
    saver = tf.train.Saver(tf.global_variables())
    summary_op = tf.summary.merge_all()

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(tf.global_variables_initializer(),
                 tf.local_variables_initializer()))
    summary_writer = tf.summary.FileWriter(dir_list['summaries'], sess.graph)

    # Set up exemplar threading
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Create dictionaries of important training and validation information
    train_dict = {
        'train_loss': train_loss,
        'train_accuracy': train_accuracy,
        'train_images': train_images,
        'train_labels': train_labels,
        'train_op': train_op,
        'train_scores': train_scores
    }
    val_dict = {
        'val_loss': val_loss,
        'val_accuracy': val_accuracy,
        'val_images': val_images,
        'val_labels': val_labels,
        'val_scores': val_scores,
    }

    # Start training loop
    np.save(
        os.path.join(dir_list['condition_evaluations'],
                     'training_config_file'), config)
    log.info('Starting training')
    output_dict = training.training_loop(
        config=config,
        db=db,
        coord=coord,
        sess=sess,
        summary_op=summary_op,
        summary_writer=summary_writer,
        saver=saver,
        threads=threads,
        summary_dir=dir_list['summaries'],
        checkpoint_dir=dir_list['checkpoints'],
        weight_dir=dir_list['weights'],
        train_dict=train_dict,
        val_dict=val_dict,
        train_model=model,
        val_model=val_model,
        exp_params=exp_params)
    log.info('Finished training.')

    model_name = config.model_struct.replace('/', '_')
    py_utils.save_npys(data=output_dict,
                       model_name=model_name,
                       output_string=dir_list['experiment_evaluations'])
Пример #5
0
def main(experiment_name,
         list_experiments=False,
         load_and_evaluate_ckpt=None,
         config_file=None,
         ckpt_file=None,
         gpu_device='/gpu:0'):
    """Create a tensorflow worker to run experiments in your DB."""
    if list_experiments:
        exps = db.list_experiments()
        print '_' * 30
        print 'Initialized experiments:'
        print '_' * 30
        for l in exps:
            print l.values()[0]
        print '_' * 30
        if len(exps) == 0:
            print 'No experiments found.'
        else:
            print 'You can add to the DB with: '\
                'python prepare_experiments.py --experiment=%s' % \
                exps[0].values()[0]
        return

    if experiment_name is None:
        print 'No experiment specified. Pulling one out of the DB.'
        experiment_name = db.get_experiment_name()

    # Prepare to run the model
    config = Config()
    condition_label = '%s_%s' % (experiment_name, py_utils.get_dt_stamp())
    experiment_label = '%s' % (experiment_name)
    log = logger.get(os.path.join(config.log_dir, condition_label))
    experiment_dict = experiments.experiments()[experiment_name]()
    config = add_to_config(d=experiment_dict, config=config)  # Globals
    config.load_and_evaluate_ckpt = load_and_evaluate_ckpt
    config, exp_params = process_DB_exps(
        experiment_name=experiment_name, log=log,
        config=config)  # Update config w/ DB params
    config = np.load(config_file).item()
    dataset_module = py_utils.import_module(model_dir=config.dataset_info,
                                            dataset=config.dataset)
    dataset_module = dataset_module.data_processing()  # hardcoded class name
    train_data, train_means_image, train_means_label = get_data_pointers(
        dataset=config.dataset,
        base_dir=config.tf_records,
        cv=dataset_module.folds.keys()[1],  # TODO: SEARCH FOR INDEX.
        log=log)
    val_data, val_means_image, val_means_label = get_data_pointers(
        dataset=config.dataset,
        base_dir=config.tf_records,
        cv=dataset_module.folds.keys()[0],
        log=log)

    # Initialize output folders
    dir_list = {
        'checkpoints':
        os.path.join(config.checkpoints, condition_label),
        'summaries':
        os.path.join(config.summaries, condition_label),
        'condition_evaluations':
        os.path.join(config.condition_evaluations, condition_label),
        'experiment_evaluations':
        os.path.join(  # DEPRECIATED
            config.experiment_evaluations, experiment_label),
        'visualization':
        os.path.join(config.visualizations, condition_label),
        'weights':
        os.path.join(config.condition_evaluations, condition_label, 'weights')
    }
    [py_utils.make_dir(v) for v in dir_list.values()]

    # Prepare data loaders on the cpu
    if all(isinstance(i, list) for i in config.data_augmentations):
        if config.data_augmentations:
            config.data_augmentations = py_utils.flatten_list(
                config.data_augmentations, log)
    config.epochs = 1
    config.shuffle = False
    with tf.device('/cpu:0'):
        train_images, train_labels = data_loader.inputs(
            dataset=train_data,
            batch_size=config.batch_size,
            model_input_image_size=dataset_module.model_input_image_size,
            tf_dict=dataset_module.tf_dict,
            data_augmentations=config.data_augmentations,
            num_epochs=config.epochs,
            tf_reader_settings=dataset_module.tf_reader,
            shuffle=config.shuffle_train,
            resize_output=config.resize_output)
        if hasattr(config, 'val_augmentations'):
            val_augmentations = config.val_augmentations
        else:
            val_augmentations = config.data_augmentations
        val_images, val_labels = data_loader.inputs(
            dataset=val_data,
            batch_size=config.batch_size,
            model_input_image_size=dataset_module.model_input_image_size,
            tf_dict=dataset_module.tf_dict,
            data_augmentations=['resize_and_crop'],
            num_epochs=config.epochs,
            tf_reader_settings=dataset_module.tf_reader,
            shuffle=config.shuffle_val,
            resize_output=config.resize_output)
    log.info('Created tfrecord dataloader tensors.')

    # Load model specification
    struct_name = config.model_struct.split(os.path.sep)[-1]
    try:
        model_dict = py_utils.import_module(
            dataset=struct_name,
            model_dir=os.path.join('models', 'structs',
                                   experiment_name).replace(os.path.sep, '.'))
    except IOError:
        print 'Could not find the model structure: %s in folder %s' % (
            struct_name, experiment_name)

    # Inject model_dict with hyperparameters if requested
    model_dict.layer_structure = hp_opt_utils.inject_model_with_hps(
        layer_structure=model_dict.layer_structure, exp_params=exp_params)

    # Prepare model on GPU
    with tf.device(gpu_device):
        with tf.variable_scope('cnn') as scope:
            # Normalize labels if needed
            if 'normalize_labels' in exp_params.keys():
                if exp_params['normalize_labels'] == 'zscore':
                    train_labels -= train_means_label['mean']
                    train_labels /= train_means_label['std']
                    log.info('Z-scoring labels.')
                elif exp_params['normalize_labels'] == 'mean':
                    train_labels -= train_means_label['mean']
                    log.info('Mean-centering labels.')

            # Training model
            if len(dataset_module.output_size) == 2:
                log.warning('Found > 1 dimension for your output size.'
                            'Converting to a scalar.')
                dataset_module.output_size = np.prod(
                    dataset_module.output_size)

            if hasattr(model_dict, 'output_structure'):
                # Use specified output layer
                output_structure = model_dict.output_structure
            else:
                output_structure = None
            model = model_utils.model_class(
                mean=train_means_image,
                training=True,
                output_size=dataset_module.output_size)
            train_scores, model_summary = model.build(
                data=train_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            eval_graph = tf.Graph()
            with eval_graph.as_default():
                with eval_graph.gradient_override_map({'selu': 'GradLRP'}):
                    train_grad_images = tf.gradients(
                        train_scores[0] * tf.cast(train_labels, tf.float32),
                        train_images)[0]
            log.info('Built training model.')
            log.debug(json.dumps(model_summary, indent=4), verbose=0)
            print_model_architecture(model_summary)

            # Check the shapes of labels and scores
            if not isinstance(train_scores, list):
                if len(train_scores.get_shape()) != len(
                        train_labels.get_shape()):
                    train_shape = train_scores.get_shape().as_list()
                    label_shape = train_labels.get_shape().as_list()
                    if len(train_shape) == 2 and len(
                            label_shape) == 1 and train_shape[-1] == 1:
                        train_labels = tf.expand_dims(train_labels, axis=-1)
                    elif len(train_shape) == 2 and len(
                            label_shape) == 1 and train_shape[-1] == 1:
                        train_scores = tf.expand_dims(train_scores, axis=-1)

            # Prepare the loss function
            train_loss, _ = loss_utils.loss_interpreter(
                logits=train_scores,  # TODO
                labels=train_labels,
                loss_type=config.loss_function,
                weights=config.loss_weights,
                dataset_module=dataset_module)

            # Add loss tensorboard tracking
            if isinstance(train_loss, list):
                for lidx, tl in enumerate(train_loss):
                    tf.summary.scalar('training_loss_%s' % lidx, tl)
                train_loss = tf.add_n(train_loss)
            else:
                tf.summary.scalar('training_loss', train_loss)

            # Add weight decay if requested
            if len(model.regularizations) > 0:
                train_loss = loss_utils.wd_loss(
                    regularizations=model.regularizations,
                    loss=train_loss,
                    wd_penalty=config.regularization_strength)
            train_op = loss_utils.optimizer_interpreter(
                loss=train_loss,
                lr=config.lr,
                optimizer=config.optimizer,
                constraints=config.optimizer_constraints,
                model=model)
            log.info('Built training loss function.')

            # Add a score for the training set
            train_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,  # TODO: Attach to exp cnfg
                pred=train_scores,  # TODO
                labels=train_labels)

            # Add aux scores if requested
            train_aux = {}
            if hasattr(dataset_module, 'aux_scores'):
                for m in dataset_module.aux_scores:
                    train_aux[m] = eval_metrics.metric_interpreter(
                        metric=m, pred=train_scores,
                        labels=train_labels)[0]  # TODO: Fix for multiloss

            # Prepare remaining tensorboard summaries
            if len(train_images.get_shape()) == 4:
                tf_fun.image_summaries(train_images, tag='Training images')
            if len(train_labels.get_shape()) > 2:
                tf_fun.image_summaries(train_labels, tag='Training_targets')
                tf_fun.image_summaries(train_scores,
                                       tag='Training_predictions')
            if isinstance(train_accuracy, list):
                for tidx, ta in enumerate(train_accuracy):
                    tf.summary.scalar('training_accuracy_%s' % tidx, ta)
            else:
                tf.summary.scalar('training_accuracy', train_accuracy)
            if config.pr_curve:
                if isinstance(train_scores, list):
                    for pidx, train_score in enumerate(train_scores):
                        train_label = train_labels[:, pidx]
                        pr_summary.op(
                            tag='training_pr_%s' % pidx,
                            predictions=tf.cast(
                                tf.argmax(train_score, axis=-1), tf.float32),
                            labels=tf.cast(train_label, tf.bool),
                            display_name='training_precision_recall_%s' % pidx)
                else:
                    pr_summary.op(tag='training_pr',
                                  predictions=tf.cast(
                                      tf.argmax(train_scores, axis=-1),
                                      tf.float32),
                                  labels=tf.cast(train_labels, tf.bool),
                                  display_name='training_precision_recall')
            log.info('Added training summaries.')

            # Validation model
            scope.reuse_variables()
            val_model = model_utils.model_class(
                mean=train_means_image,  # Normalize with train data
                training=False,  # False,
                output_size=dataset_module.output_size)
            val_scores, _ = val_model.build(  # Ignore summary
                data=val_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            eval_graph = tf.Graph()
            with eval_graph.as_default():
                with eval_graph.gradient_override_map({'selu': 'GradLRP'}):
                    val_grad_images = tf.gradients(
                        val_scores[0] * tf.cast(val_labels, tf.float32),
                        val_images)[0]
            log.info('Built validation model.')

            # Check the shapes of labels and scores
            if not isinstance(train_scores, list):
                if len(val_scores.get_shape()) != len(val_labels.get_shape()):
                    val_shape = val_scores.get_shape().as_list()
                    val_label_shape = val_labels.get_shape().as_list()
                    if len(val_shape) == 2 and len(
                            val_label_shape) == 1 and val_shape[-1] == 1:
                        val_labels = tf.expand_dims(val_labels, axis=-1)
                    if len(val_shape) == 2 and len(
                            val_label_shape) == 1 and val_shape[-1] == 1:
                        val_scores = tf.expand_dims(val_scores, axis=-1)
            val_loss, _ = loss_utils.loss_interpreter(
                logits=val_scores,
                labels=val_labels,
                loss_type=config.loss_function,
                weights=config.loss_weights,
                dataset_module=dataset_module)

            # Add loss tensorboard tracking
            if isinstance(val_loss, list):
                for lidx, tl in enumerate(val_loss):
                    tf.summary.scalar('validation_loss_%s' % lidx, tl)
                val_loss = tf.add_n(val_loss)
            else:
                tf.summary.scalar('validation_loss', val_loss)

            # Add a score for the validation set
            val_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,  # TODO
                pred=val_scores,
                labels=val_labels)

            # Add aux scores if requested
            val_aux = {}
            if hasattr(dataset_module, 'aux_scores'):
                for m in dataset_module.aux_scores:
                    val_aux[m] = eval_metrics.metric_interpreter(
                        metric=m, pred=val_scores,
                        labels=val_labels)[0]  # TODO: Fix for multiloss

            # Prepare tensorboard summaries
            if len(val_images.get_shape()) == 4:
                tf_fun.image_summaries(val_images, tag='Validation')
            if len(val_labels.get_shape()) > 2:
                tf_fun.image_summaries(val_labels, tag='Validation_targets')
                tf_fun.image_summaries(val_scores,
                                       tag='Validation_predictions')
            if isinstance(val_accuracy, list):
                for vidx, va in enumerate(val_accuracy):
                    tf.summary.scalar('validation_accuracy_%s' % vidx, va)
            else:
                tf.summary.scalar('validation_accuracy', val_accuracy)
            if config.pr_curve:
                if isinstance(val_scores, list):
                    for pidx, val_score in enumerate(val_scores):
                        val_label = val_labels[:, pidx]
                        pr_summary.op(
                            tag='validation_pr_%s' % pidx,
                            predictions=tf.cast(tf.argmax(val_score, axis=-1),
                                                tf.float32),
                            labels=tf.cast(val_label, tf.bool),
                            display_name='validation_precision_recall_%s' %
                            pidx)
                else:
                    pr_summary.op(tag='validation_pr',
                                  predictions=tf.cast(
                                      tf.argmax(val_scores, axis=-1),
                                      tf.float32),
                                  labels=tf.cast(val_labels, tf.bool),
                                  display_name='validation_precision_recall')
            log.info('Added validation summaries.')

    # Set up summaries and saver
    saver = tf.train.Saver(tf.global_variables())

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(tf.global_variables_initializer(),
                 tf.local_variables_initializer()))

    # Set up exemplar threading
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Create dictionaries of important training and validation information
    train_dict = {
        'train_loss': train_loss,
        'train_images': train_images,
        'train_labels': train_labels,
        'train_op': train_op,
        'train_scores': train_scores,
        'train_grad_images': train_grad_images
    }
    val_dict = {
        'val_loss': val_loss,
        'val_images': val_images,
        'val_labels': val_labels,
        'val_scores': val_scores,
        'val_grad_images': val_grad_images
    }
    if isinstance(train_accuracy, list):
        for tidx, (ta, va) in enumerate(zip(train_accuracy, val_accuracy)):
            train_dict['train_accuracy_%s' % tidx] = ta
            val_dict['val_accuracy_%s' % tidx] = va
    else:
        train_dict['train_accuracy_0'] = train_accuracy
        val_dict['val_accuracy_0'] = val_accuracy

    if load_and_evaluate_ckpt is not None:
        # Remove the train operation and add a ckpt pointer
        del train_dict['train_op']

    if hasattr(dataset_module, 'aux_score'):
        # Attach auxillary scores to tensor dicts
        for m in dataset_module.aux_scores:
            train_dict['train_aux_%s' % m] = train_aux[m]
            val_dict['val_aux_%s' % m] = val_aux[m]

    # Start training loop
    checkpoint_dir = dir_list['checkpoints']
    step = 0
    train_losses, train_accs, train_aux, timesteps = {}, {}, {}, {}
    val_scores, val_aux, val_labels, val_grads = {}, {}, {}, {}
    train_images, val_images = {}, {}
    train_scores, train_labels = {}, {}
    train_aux_check = np.any(['aux_score' in k for k in train_dict.keys()])
    val_aux_check = np.any(['aux_score' in k for k in val_dict.keys()])

    # Restore model
    saver.restore(sess, ckpt_file)

    # Start evaluation
    try:
        while not coord.should_stop():
            start_time = time.time()
            train_vars = sess.run(train_dict.values())
            it_train_dict = {
                k: v
                for k, v in zip(train_dict.keys(), train_vars)
            }
            duration = time.time() - start_time
            train_losses[step] = it_train_dict['train_loss']
            train_accs[step] = it_train_dict['train_accuracy_0']
            train_images[step] = it_train_dict['train_images']
            train_labels[step] = it_train_dict['train_labels']
            train_scores[step] = it_train_dict['train_scores']
            timesteps[step] = duration
            if train_aux_check:
                # Loop through to find aux scores
                it_train_aux = {
                    itk: itv
                    for itk, itv in it_train_dict.iteritems()
                    if 'aux_score' in itk
                }
                train_aux[step] = it_train_aux
            assert not np.isnan(it_train_dict['train_loss']).any(
            ), 'Model diverged with loss = NaN'
            if step % config.validation_iters == 0:
                it_val_scores, it_val_labels, it_val_aux, it_val_grads, it_val_ims = [], [], [], [], []
                for num_vals in range(config.num_validation_evals):
                    # Validation accuracy as the average of n batches
                    val_vars = sess.run(val_dict.values())
                    it_val_dict = {
                        k: v
                        for k, v in zip(val_dict.keys(), val_vars)
                    }
                    it_val_labels += [it_val_dict['val_labels']]
                    it_val_scores += [it_val_dict['val_scores']]
                    it_val_grads += [it_val_dict['val_grad_images']]
                    it_val_ims += [it_val_dict['val_images']]
                    if val_aux_check:
                        iva = {
                            itk: itv
                            for itk, itv in it_val_dict.iteritems()
                            if 'aux_score' in itk
                        }
                        it_val_aux += [iva]
                val_scores[step] = it_val_scores
                val_labels[step] = it_val_labels
                val_aux[step] = it_val_aux
                val_images[step] = it_val_grads
                val_grads[step] = it_val_ims

            # End iteration
            step += 1

    except tf.errors.OutOfRangeError:
        print 'Done with evaluation for %d epochs, %d steps.' % (config.epochs,
                                                                 step)
        print 'Saved to: %s' % checkpoint_dir
    finally:
        coord.request_stop()
    coord.join(threads)
    sess.close()

    import ipdb
    ipdb.set_trace()
    np.savez(
        'val_imgs_grads',
        val_images=val_images,  # it_val_dict['val_images'],
        val_grads=val_grads,  # it_val_dict['val_grad_images'],
        val_labels=val_labels,  # it_val_dict['val_labels'],
        val_scores=val_scores)  # it_val_dict['val_scores'][0])
Пример #6
0
def main(
        experiment_name,
        list_experiments=False,
        load_and_evaluate_ckpt=None,
        placeholder_data=None,
        grad_images=False,
        gpu_device='/gpu:0'):
    """Create a tensorflow worker to run experiments in your DB."""
    if list_experiments:
        exps = db.list_experiments()
        print '_' * 30
        print 'Initialized experiments:'
        print '_' * 30
        for l in exps:
            print l.values()[0]
        print '_' * 30
        if len(exps) == 0:
            print 'No experiments found.'
        else:
            print 'You can add to the DB with: '\
                'python prepare_experiments.py --experiment=%s' % \
                exps[0].values()[0]
        return

    if experiment_name is None:
        print 'No experiment specified. Pulling one out of the DB.'
        experiment_name = db.get_experiment_name()

    # Prepare to run the model
    config = Config()
    condition_label = '%s_%s' % (experiment_name, py_utils.get_dt_stamp())
    experiment_label = '%s' % (experiment_name)
    log = logger.get(os.path.join(config.log_dir, condition_label))
    assert experiment_name is not None, 'Empty experiment name.'
    experiment_dict = experiments.experiments()[experiment_name]()
    config = add_to_config(d=experiment_dict, config=config)  # Globals
    config.load_and_evaluate_ckpt = load_and_evaluate_ckpt
    if load_and_evaluate_ckpt is not None:
        # Remove the train operation and add a ckpt pointer
        from ops import evaluation
    config, exp_params = process_DB_exps(
        experiment_name=experiment_name,
        log=log,
        config=config)  # Update config w/ DB params
    dataset_module = py_utils.import_module(
        model_dir=config.dataset_info,
        dataset=config.dataset)
    dataset_module = dataset_module.data_processing()  # hardcoded class name
    train_key = [k for k in dataset_module.folds.keys() if 'train' in k]
    if not len(train_key):
        train_key = 'train'
    else:
        train_key = train_key[0]
    train_data, train_means_image, train_means_label = get_data_pointers(
        dataset=config.dataset,
        base_dir=config.tf_records,
        cv=train_key,
        log=log)
    val_key = [k for k in dataset_module.folds.keys() if 'val' in k]
    if not len(val_key):
        val_key = 'train'
    else:
        val_key = val_key[0]
    val_data, val_means_image, val_means_label = get_data_pointers(
        dataset=config.dataset,
        base_dir=config.tf_records,
        cv=val_key,
        log=log)

    # Initialize output folders
    dir_list = {
        'checkpoints': os.path.join(
            config.checkpoints, condition_label),
        'summaries': os.path.join(
            config.summaries, condition_label),
        'condition_evaluations': os.path.join(
            config.condition_evaluations, condition_label),
        'experiment_evaluations': os.path.join(  # DEPRECIATED
            config.experiment_evaluations, experiment_label),
        'visualization': os.path.join(
            config.visualizations, condition_label),
        'weights': os.path.join(
            config.condition_evaluations, condition_label, 'weights')
    }
    [py_utils.make_dir(v) for v in dir_list.values()]

    # Prepare data loaders on the cpu
    if all(isinstance(i, list) for i in config.data_augmentations):
        if config.data_augmentations:
            config.data_augmentations = py_utils.flatten_list(
                config.data_augmentations,
                log)
    if load_and_evaluate_ckpt is not None:
        config.epochs = 1
        config.train_shuffle = False
        config.val_shuffle = False
    with tf.device('/cpu:0'):
        if placeholder_data:
            placeholder_shape = placeholder_data['train_image_shape']
            placeholder_dtype = placeholder_data['train_image_dtype']
            original_train_images = tf.placeholder(
                dtype=placeholder_dtype,
                shape=placeholder_shape,
                name='train_images')
            placeholder_shape = placeholder_data['train_label_shape']
            placeholder_dtype = placeholder_data['train_label_dtype']
            original_train_labels = tf.placeholder(
                dtype=placeholder_dtype,
                shape=placeholder_shape,
                name='train_labels')
            placeholder_shape = placeholder_data['val_image_shape']
            placeholder_dtype = placeholder_data['val_image_dtype']
            original_val_images = tf.placeholder(
                dtype=placeholder_dtype,
                shape=placeholder_shape,
                name='val_images')
            placeholder_shape = placeholder_data['val_label_shape']
            placeholder_dtype = placeholder_data['val_label_dtype']
            original_val_labels = tf.placeholder(
                dtype=placeholder_dtype,
                shape=placeholder_shape,
                name='val_labels')

            # Apply augmentations
            (
                train_images,
                train_labels
            ) = data_loader.placeholder_image_augmentations(
                images=original_train_images,
                model_input_image_size=dataset_module.model_input_image_size,
                labels=original_train_labels,
                data_augmentations=config.data_augmentations,
                batch_size=config.batch_size)
            (
                val_images,
                val_labels
            ) = data_loader.placeholder_image_augmentations(
                images=original_val_images,
                model_input_image_size=dataset_module.model_input_image_size,
                labels=original_val_labels,
                data_augmentations=config.data_augmentations,
                batch_size=config.batch_size)

            # Store in the placeholder dict
            placeholder_data['train_images'] = original_train_images
            placeholder_data['train_labels'] = original_train_labels
            placeholder_data['val_images'] = original_val_images
            placeholder_data['val_labels'] = original_val_labels
        else:
            train_images, train_labels = data_loader.inputs(
                dataset=train_data,
                batch_size=config.batch_size,
                model_input_image_size=dataset_module.model_input_image_size,
                tf_dict=dataset_module.tf_dict,
                data_augmentations=config.data_augmentations,
                num_epochs=config.epochs,
                tf_reader_settings=dataset_module.tf_reader,
                shuffle=config.shuffle_train,
                resize_output=config.resize_output)
            if hasattr(config, 'val_augmentations'):
                val_augmentations = config.val_augmentations
            else:
                val_augmentations = config.data_augmentations
            val_images, val_labels = data_loader.inputs(
                dataset=val_data,
                batch_size=config.batch_size,
                model_input_image_size=dataset_module.model_input_image_size,
                tf_dict=dataset_module.tf_dict,
                data_augmentations=val_augmentations,
                num_epochs=config.epochs,
                tf_reader_settings=dataset_module.tf_reader,
                shuffle=config.shuffle_val,
                resize_output=config.resize_output)
    log.info('Created tfrecord dataloader tensors.')

    # Load model specification
    struct_name = config.model_struct.split(os.path.sep)[-1]
    try:
        model_dict = py_utils.import_module(
            dataset=struct_name,
            model_dir=os.path.join(
                'models',
                'structs',
                experiment_name).replace(os.path.sep, '.')
            )
    except IOError:
        print 'Could not find the model structure: %s in folder %s' % (
            struct_name,
            experiment_name)

    # Inject model_dict with hyperparameters if requested
    model_dict.layer_structure = hp_opt_utils.inject_model_with_hps(
        layer_structure=model_dict.layer_structure,
        exp_params=exp_params)

    # Prepare variables for the models
    if len(dataset_module.output_size) == 2:
        log.warning(
            'Found > 1 dimension for your output size.'
            'Converting to a scalar.')
        dataset_module.output_size = np.prod(
            dataset_module.output_size)

    if hasattr(model_dict, 'output_structure'):
        # Use specified output layer
        output_structure = model_dict.output_structure
    else:
        output_structure = None

    # Correct number of output neurons if needed
    if config.dataloader_override and\
            'weights' in output_structure[-1].keys():
        output_neurons = output_structure[-1]['weights'][0]
        size_check = output_neurons != dataset_module.output_size
        fc_check = output_structure[-1]['layers'][0] == 'fc'
        if size_check and fc_check:
            output_structure[-1]['weights'][0] = dataset_module.output_size
            log.warning('Adjusted output neurons from %s to %s.' % (
                output_neurons,
                dataset_module.output_size))

    # Prepare model on GPU
    if not hasattr(dataset_module, 'input_normalization'):
        dataset_module.input_normalization = None
    with tf.device(gpu_device):
        with tf.variable_scope('cnn') as scope:
            # Training model
            model = model_utils.model_class(
                mean=train_means_image,
                training=True,
                output_size=dataset_module.output_size,
                input_normalization=dataset_module.input_normalization)
            train_scores, model_summary, _ = model.build(
                data=train_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            if grad_images:
                oh_dims = int(train_scores.get_shape()[-1])
                target_scores = tf.one_hot(train_labels, oh_dims) * train_scores
                train_gradients = tf.gradients(target_scores, train_images)[0]
            log.info('Built training model.')
            log.debug(
                json.dumps(model_summary, indent=4),
                verbose=0)
            print_model_architecture(model_summary)

            # Normalize labels on GPU if needed
            if 'normalize_labels' in exp_params.keys():
                if exp_params['normalize_labels'] == 'zscore':
                    train_labels -= train_means_label['mean']
                    train_labels /= train_means_label['std']
                    val_labels -= train_means_label['mean']
                    val_labels /= train_means_label['std']
                    log.info('Z-scoring labels.')
                elif exp_params['normalize_labels'] == 'mean':
                    train_labels -= train_means_label['mean']
                    val_labels -= val_means_label['mean']
                    log.info('Mean-centering labels.')

            # Check the shapes of labels and scores
            if not isinstance(train_scores, list):
                if len(
                        train_scores.get_shape()) != len(
                            train_labels.get_shape()):
                    train_shape = train_scores.get_shape().as_list()
                    label_shape = train_labels.get_shape().as_list()
                    val_shape = val_scores.get_shape().as_list()
                    val_label_shape = val_labels.get_shape().as_list()

                    if len(
                        train_shape) == 2 and len(
                            label_shape) == 1 and train_shape[-1] == 1:
                        train_labels = tf.expand_dims(train_labels, axis=-1)
                        val_labels = tf.expand_dims(val_labels, axis=-1)
                    elif len(
                        train_shape) == 2 and len(
                            label_shape) == 1 and train_shape[-1] == 1:
                        train_scores = tf.expand_dims(train_scores, axis=-1)
                        val_scores = tf.expand_dims(val_scores, axis=-1)

            # Prepare the loss function
            train_loss, _ = loss_utils.loss_interpreter(
                logits=train_scores,  # TODO
                labels=train_labels,
                loss_type=config.loss_function,
                weights=config.loss_weights,
                dataset_module=dataset_module)

            # Add loss tensorboard tracking
            if isinstance(train_loss, list):
                for lidx, tl in enumerate(train_loss):
                    tf.summary.scalar('training_loss_%s' % lidx, tl)
                train_loss = tf.add_n(train_loss)
            else:
                tf.summary.scalar('training_loss', train_loss)

            # Add weight decay if requested
            if len(model.regularizations) > 0:
                train_loss = loss_utils.wd_loss(
                    regularizations=model.regularizations,
                    loss=train_loss,
                    wd_penalty=config.regularization_strength)
            assert config.lr is not None, 'No learning rate.'  # TODO: Make a QC function 
            if config.lr > 1:
                old_lr = config.lr
                config.lr = loss_utils.create_lr_schedule(
                    train_batch=config.batch_size,
                    num_training=config.lr)
                config.optimizer = 'momentum'
                log.info('Forcing momentum classifier.')
            else:
                old_lr = None
            train_op = loss_utils.optimizer_interpreter(
                loss=train_loss,
                lr=config.lr,
                optimizer=config.optimizer,
                constraints=config.optimizer_constraints,
                model=model)
            log.info('Built training loss function.')

            # Add a score for the training set
            train_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,  # TODO: Attach to exp cnfg
                pred=train_scores,  # TODO
                labels=train_labels)

            # Add aux scores if requested
            train_aux = {}
            if hasattr(dataset_module, 'aux_scores'):
                for m in dataset_module.aux_scores:
                    train_aux[m] = eval_metrics.metric_interpreter(
                        metric=m,
                        pred=train_scores,
                        labels=train_labels)  # [0]  # TODO: Fix for multiloss

            # Prepare remaining tensorboard summaries
            if config.tensorboard_images:
                if len(train_images.get_shape()) == 4:
                    tf_fun.image_summaries(train_images, tag='Training images')
                if (np.asarray(
                        train_labels.get_shape().as_list()) > 1).sum() > 2:
                    tf_fun.image_summaries(
                        train_labels,
                        tag='Training_targets')
                    tf_fun.image_summaries(
                        train_scores,
                        tag='Training_predictions')
            if isinstance(train_accuracy, list):
                for tidx, ta in enumerate(train_accuracy):
                    tf.summary.scalar('training_accuracy_%s' % tidx, ta)
            else:
                tf.summary.scalar('training_accuracy', train_accuracy)
            if config.pr_curve:
                if isinstance(train_scores, list):
                    for pidx, train_score in enumerate(train_scores):
                        train_label = train_labels[:, pidx]
                        pr_summary.op(
                            tag='training_pr_%s' % pidx,
                            predictions=tf.cast(
                                tf.argmax(
                                    train_score,
                                    axis=-1),
                                tf.float32),
                            labels=tf.cast(train_label, tf.bool),
                            display_name='training_precision_recall_%s' % pidx)
                else:
                    pr_summary.op(
                        tag='training_pr',
                        predictions=tf.cast(
                            tf.argmax(
                                train_scores,
                                axis=-1),
                            tf.float32),
                        labels=tf.cast(train_labels, tf.bool),
                        display_name='training_precision_recall')
            log.info('Added training summaries.')

        with tf.variable_scope('cnn', tf.AUTO_REUSE) as scope:
            # Validation model
            scope.reuse_variables()
            val_model = model_utils.model_class(
                mean=train_means_image,  # Normalize with train data
                training=False,
                output_size=dataset_module.output_size,
                input_normalization=dataset_module.input_normalization)
            val_scores, _, _ = val_model.build(  # Ignore summary
                data=val_images,
                layer_structure=model_dict.layer_structure,
                output_structure=output_structure,
                log=log,
                tower_name='cnn')
            if grad_images:
                oh_dims = int(val_scores.get_shape()[-1])
                target_scores = tf.one_hot(val_labels, oh_dims) * val_scores
                val_gradients = tf.gradients(target_scores, val_images)[0]
            log.info('Built validation model.')

            # Check the shapes of labels and scores
            val_loss, _ = loss_utils.loss_interpreter(
                logits=val_scores,
                labels=val_labels,
                loss_type=config.loss_function,
                weights=config.loss_weights,
                dataset_module=dataset_module)

            # Add loss tensorboard tracking
            if isinstance(val_loss, list):
                for lidx, tl in enumerate(val_loss):
                    tf.summary.scalar('validation_loss_%s' % lidx, tl)
                val_loss = tf.add_n(val_loss)
            else:
                tf.summary.scalar('validation_loss', val_loss)

            # Add a score for the validation set
            val_accuracy = eval_metrics.metric_interpreter(
                metric=dataset_module.score_metric,  # TODO
                pred=val_scores,
                labels=val_labels)

            # Add aux scores if requested
            val_aux = {}
            if hasattr(dataset_module, 'aux_scores'):
                for m in dataset_module.aux_scores:
                    val_aux[m] = eval_metrics.metric_interpreter(
                        metric=m,
                        pred=val_scores,
                        labels=val_labels)  # [0]  # TODO: Fix for multiloss

            # Prepare tensorboard summaries
            if config.tensorboard_images:
                if len(val_images.get_shape()) == 4:
                    tf_fun.image_summaries(
                        val_images,
                        tag='Validation')
                if (np.asarray(
                        val_labels.get_shape().as_list()) > 1).sum() > 2:
                    tf_fun.image_summaries(
                        val_labels,
                        tag='Validation_targets')
                    tf_fun.image_summaries(
                        val_scores,
                        tag='Validation_predictions')
            if isinstance(val_accuracy, list):
                for vidx, va in enumerate(val_accuracy):
                    tf.summary.scalar('validation_accuracy_%s' % vidx, va)
            else:
                tf.summary.scalar('validation_accuracy', val_accuracy)
            if config.pr_curve:
                if isinstance(val_scores, list):
                    for pidx, val_score in enumerate(val_scores):
                        val_label = val_labels[:, pidx]
                        pr_summary.op(
                            tag='validation_pr_%s' % pidx,
                            predictions=tf.cast(
                                tf.argmax(
                                    val_score,
                                    axis=-1),
                                tf.float32),
                            labels=tf.cast(val_label, tf.bool),
                            display_name='validation_precision_recall_%s' %
                            pidx)
                else:
                    pr_summary.op(
                        tag='validation_pr',
                        predictions=tf.cast(
                            tf.argmax(
                                val_scores,
                                axis=-1),
                            tf.float32),
                        labels=tf.cast(val_labels, tf.bool),
                        display_name='validation_precision_recall')
            log.info('Added validation summaries.')

    # Set up summaries and saver
    if not hasattr(config, 'max_to_keep'):
        config.max_to_keep = None
    saver = tf.train.Saver(
        var_list=tf.global_variables(),
        max_to_keep=config.max_to_keep)
    summary_op = tf.summary.merge_all()

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(
            tf.global_variables_initializer(),
            tf.local_variables_initializer())
        )
    summary_writer = tf.summary.FileWriter(dir_list['summaries'], sess.graph)

    # Set up exemplar threading
    if placeholder_data:
        coord, threads = None, None
    else:
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Create dictionaries of important training and validation information
    train_dict = {
        'train_loss': train_loss,
        'train_images': train_images,
        'train_labels': train_labels,
        'train_op': train_op,
        'train_scores': train_scores
    }
    val_dict = {
        'val_loss': val_loss,
        'val_images': val_images,
        'val_labels': val_labels,
        'val_scores': val_scores,
    }

    if grad_images:
        train_dict['train_gradients'] = train_gradients
        val_dict['val_gradients'] = val_gradients

    if isinstance(train_accuracy, list):
        for tidx, (ta, va) in enumerate(zip(train_accuracy, val_accuracy)):
            train_dict['train_accuracy_%s' % tidx] = ta
            val_dict['val_accuracy_%s' % tidx] = va
    else:
        train_dict['train_accuracy_0'] = train_accuracy
        val_dict['val_accuracy_0'] = val_accuracy

    if load_and_evaluate_ckpt is not None:
        # Remove the train operation and add a ckpt pointer
        del train_dict['train_op']

    if hasattr(dataset_module, 'aux_score'):
        # Attach auxillary scores to tensor dicts
        for m in dataset_module.aux_scores:
            train_dict['train_aux_%s' % m] = train_aux[m]
            val_dict['val_aux_%s' % m] = val_aux[m]

    # Start training loop
    if old_lr is not None:
        config.lr = old_lr
    np.save(
        os.path.join(
            dir_list['condition_evaluations'], 'training_config_file'),
        config)
    log.info('Starting training')
    if load_and_evaluate_ckpt is not None:
        return evaluation.evaluation_loop(
            config=config,
            db=db,
            coord=coord,
            sess=sess,
            summary_op=summary_op,
            summary_writer=summary_writer,
            saver=saver,
            threads=threads,
            summary_dir=dir_list['summaries'],
            checkpoint_dir=dir_list['checkpoints'],
            weight_dir=dir_list['weights'],
            train_dict=train_dict,
            val_dict=val_dict,
            train_model=model,
            val_model=val_model,
            exp_params=exp_params,
            placeholder_data=placeholder_data)
    else:
        output_dict = training.training_loop(
            config=config,
            db=db,
            coord=coord,
            sess=sess,
            summary_op=summary_op,
            summary_writer=summary_writer,
            saver=saver,
            threads=threads,
            summary_dir=dir_list['summaries'],
            checkpoint_dir=dir_list['checkpoints'],
            weight_dir=dir_list['weights'],
            train_dict=train_dict,
            val_dict=val_dict,
            train_model=model,
            val_model=val_model,
            exp_params=exp_params)

    log.info('Finished training.')
    model_name = config.model_struct.replace('/', '_')
    if output_dict is not None:
        py_utils.save_npys(
            data=output_dict,
            model_name=model_name,
            output_string=dir_list['experiment_evaluations'])
Пример #7
0
def train_vgg16(device):

    os.environ['CUDA_VISIBLE_DEVICES'] = str(device)
    config = vggConfig()
    train_data = config.training_images
    train_meta = np.load(config.training_meta)
    print 'Using train tfrecords: %s | %s image/heatmap combos' % (
        [train_data], len(train_meta['labels']))

    validation_data = config.validation_images
    val_meta = np.load(config.validation_meta)
    print 'Using validation tfrecords: %s | %s images' % (
        validation_data, len(val_meta['labels']))
    # Make output directories if they do not exist
    dt_stamp = 'grayscale_' +\
        str(config.initial_learning_rate)[2:] + '_' + str(
            len(train_meta['labels'])) + '_' + re.split(
            '\.', str(datetime.now()))[0].\
        replace(' ', '_').replace(':', '_').replace('-', '_')
    config.train_checkpoint = os.path.join(config.train_checkpoint,
                                           dt_stamp)  # timestamp this run
    out_dir = os.path.join(config.results, dt_stamp)
    dir_list = [
        config.train_checkpoint, config.train_summaries, config.results,
        out_dir
    ]
    [make_dir(d) for d in dir_list]

    print '-' * 60
    print('Training model:' + dt_stamp)
    print '-' * 60

    # Prepare data on CPU
    train_images, train_labels = inputs(train_data,
                                        config.train_batch,
                                        config.image_size,
                                        config.model_image_size[:2],
                                        train=config.data_augmentations,
                                        num_epochs=config.epochs,
                                        return_heatmaps=False,
                                        is_grayscale=True)
    val_images, val_labels = inputs(validation_data,
                                    config.validation_batch,
                                    config.image_size,
                                    config.model_image_size[:2],
                                    num_epochs=None,
                                    return_heatmaps=False,
                                    is_grayscale=True)

    step = get_or_create_global_step()
    step_op = tf.assign(step, step + 1)
    # Prepare model on GPU
    with tf.variable_scope('cnn') as scope:
        vgg = vgg16.model_struct()
        train_mode = tf.get_variable(name='training', initializer=True)
        vgg.build(train_images,
                  is_training=True,
                  is_grayscale=True,
                  batchnorm=True)

        # Prepare the loss function
        loss = softmax_loss(logits=vgg.fc8, labels=train_labels)

        # Add weight decay of fc6/7/8
        if config.wd_penalty is not None:
            loss = wd_loss(loss=loss,
                           trainables=tf.trainable_variables(),
                           config=config)

        lr = tf.train.exponential_decay(
            learning_rate=config.initial_learning_rate,
            global_step=step_op,
            decay_steps=config.decay_steps,
            decay_rate=config.learning_rate_decay_factor,
            staircase=True)

        if config.optimizer == "adam":
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                train_op = tf.train.AdamOptimizer(lr).minimize(loss)
        elif config.optimizer == "sgd":
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                train_op = tf.train.GradientDescentOptimizer(lr).minimize(loss)
        elif config.optimizer == "nestrov":
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                train_op = tf.train.MomentumOptimizer(
                    lr, config.momentum, use_nesterov=True).minimize(loss)
        else:
            raise Exception(
                "Not known optimizer! options are adam, sgd or nestrov")

        train_accuracy = class_accuracy(vgg.prob,
                                        train_labels)  # training accuracy

        # Add summaries for debugging
        tf.summary.image('train images', train_images)
        tf.summary.image('validation images', val_images)
        tf.summary.scalar("loss", loss)
        tf.summary.scalar("training accuracy", train_accuracy)

        # Setup validation op
        scope.reuse_variables()

        # Validation graph is the same as training except no batchnorm
        val_vgg = vgg16.model_struct()
        val_vgg.build(val_images,
                      is_training=False,
                      is_grayscale=True,
                      batchnorm=True)

        # Calculate validation accuracy
        val_accuracy = class_accuracy(val_vgg.prob, val_labels)
        tf.summary.scalar("validation accuracy", val_accuracy)

    # Set up summaries and saver
    saver = tf.train.Saver(tf.global_variables(),
                           max_to_keep=config.keep_checkpoints)

    restorer = tf.train.Saver()
    summary_op = tf.summary.merge_all()

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(tf.global_variables_initializer(),
                 tf.local_variables_initializer()))
    restorer.restore(
        sess,
        '/media/data_cifs/andreas/vgg_train/checkpoints/grayscale_-05_1283163_2017_09_09_19_20_09/model_228000.ckpt-228000'
    )
    summary_dir = os.path.join(config.train_summaries, dt_stamp)
    summary_writer = tf.summary.FileWriter(summary_dir, sess.graph)

    # Set up exemplar threading
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Start training loop
    np.save(os.path.join(out_dir, 'training_config_file'), config)
    training_loop(config, coord, sess, train_op, step_op, summary_op,
                  summary_writer, loss, saver, threads, out_dir, summary_dir,
                  validation_data, val_accuracy, train_accuracy, lr)
Пример #8
0
def test_vgg16():
    dbc = config.config()

    validation_pointer = os.path.join(
        dbc.packaged_data_path,
        '%s_%s.%s' % ('validation', dbc.packaged_data_file, dbc.output_format))

    # Prepare data on CPU
    with tf.device('/cpu:0'):
        val_images, val_labels, val_files = inputs(
            tfrecord_file=validation_pointer,
            batch_size=dbc.validation_batch,
            im_size=dbc.validation_image_size,
            model_input_shape=dbc.model_image_size[:2],
            num_epochs=1,
            data_augmentations=dbc.validation_augmentations,
            shuffle_batch=True)

    # Prepare pretrained model on GPU
    with tf.device('/gpu:0'):
        with tf.variable_scope('cnn'):
            cnn = vgg16.Vgg16()
            validation_mode = tf.Variable(False, name='training')
            cnn.build(val_images,
                      output_shape=1000,
                      train_mode=validation_mode)
            sample_layer = cnn['fc7']
            accs = class_accuracy(cnn.prob, val_labels)
    saver = tf.train.Saver(tf.all_variables(), max_to_keep=10)

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    sess.run(
        tf.group(tf.initialize_all_variables(),
                 tf.initialize_local_variables()))
    # Set up exemplar threading
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    saver.restore(sess, dbc.model_types['vgg16'][0])
    # Start training loop
    results = {'accs': [], 'preds': [], 'labs': [], 'files': []}
    np_path = os.path.join(dbc.checkpoint_directory, 'validation_results')
    step = 0
    scores, labels = [], []
    try:
        print 'Testing model'
        while not coord.should_stop():
            start_time = time.time()
            score, lab, f, probs = sess.run(
                [sample_layer, val_labels, val_files, cnn['prob']])
            import ipdb
            ipdb.set_trace()
            print acc

    except tf.errors.OutOfRangeError:
        print 'Done testing.'
    finally:
        np.savez(np_path, **results)
        print 'Saved to: %s' % np_path
        coord.request_stop()
    coord.join(threads)
    sess.close()
    print '%.4f%% correct' % np.mean(results['accs'])
    if simulate_subjects:
        sim_subs = []
        print 'Simulating subjects'
        scores = np.concatenate(scores)
        labels = np.concatenate(results['labs'])
        for sub in tqdm(range(simulate_subjects)):
            it_results = {'accs': [], 'preds': [], 'labs': [], 'files': []}

            neuron_drop = np.random.rand(scores.shape[1]) > .95
            it_scores = np.copy(scores)
            it_scores[:, neuron_drop] = 0
            pred = svc.predict(it_scores)
            acc = np.mean(pred == labels)
            it_results['accs'] += [acc]
            it_results['preds'] += [pred]
            it_results['labs'] += [labels]
            it_results['files'] += [np.concatenate(results['files'])]
            sim_subs += [it_results]
        np.save(np_path + '_sim_subs', sim_subs)
Пример #9
0
def model_builder(
        params,
        config,
        model_spec,
        gpu_device,
        cpu_device,
        placeholders=False,
        tensorboard_images=False):
    """Standard model building routines."""
    config = py_utils.add_to_config(
        d=params,
        config=config)
    exp_label = '%s_%s' % (params['exp_name'], py_utils.get_dt_stamp())
    directories = py_utils.prepare_directories(config, exp_label)
    dataset_module = py_utils.import_module(
        model_dir=config.dataset_info,
        dataset=config.dataset)
    dataset_module = dataset_module.data_processing()  # hardcoded class name
    train_key = [k for k in dataset_module.folds.keys() if 'train' in k]
    if not len(train_key):
        train_key = 'train'
    else:
        train_key = train_key[0]
    (
        train_data,
        train_means_image,
        train_means_label) = py_utils.get_data_pointers(
        dataset=config.dataset,
        base_dir=config.tf_records,
        cv=train_key)
    val_key = [k for k in dataset_module.folds.keys() if 'val' in k]
    if not len(val_key):
        val_key = 'train'
    else:
        val_key = val_key[0]
    if hasattr(config, 'val_dataset'):
        val_dataset = config.val_dataset
    else:
        val_dataset = config.dataset
    val_data, val_means_image, val_means_label = py_utils.get_data_pointers(
        dataset=val_dataset,
        base_dir=config.tf_records,
        cv=val_key)

    # Create data tensors

    with tf.device(cpu_device):
        if placeholders:
            (
                train_images,
                train_labels,
                val_images,
                val_labels) = get_placeholders(dataset_module, config)
            placeholders = dataset_module.get_data()
        else:
            train_images, train_labels = data_loader.inputs(
                dataset=train_data,
                batch_size=config.batch_size,
                model_input_image_size=dataset_module.model_input_image_size,
                tf_dict=dataset_module.tf_dict,
                data_augmentations=config.data_augmentations,
                num_epochs=config.epochs,
                tf_reader_settings=dataset_module.tf_reader,
                shuffle=config.shuffle_train)
            val_images, val_labels = data_loader.inputs(
                dataset=val_data,
                batch_size=config.batch_size,
                model_input_image_size=dataset_module.model_input_image_size,
                tf_dict=dataset_module.tf_dict,
                data_augmentations=config.val_augmentations,
                num_epochs=config.epochs,
                tf_reader_settings=dataset_module.tf_reader,
                shuffle=config.shuffle_val)

    # Build training and val models
    with tf.device(gpu_device):
        train_logits, train_hgru_act = model_spec(
            data_tensor=train_images,
            reuse=None,
            training=True)
        val_logits, val_hgru_act = model_spec(
            data_tensor=val_images,
            reuse=tf.AUTO_REUSE,
            training=False)

    # Derive loss
    loss_type = None
    if hasattr(config, 'loss_type'):
        loss_type = config.loss_type
    train_loss = losses.derive_loss(
        labels=train_labels,
        logits=train_logits,
        loss_type=loss_type)
    val_loss = losses.derive_loss(
        labels=val_labels,
        logits=val_logits,
        loss_type=loss_type)
    if hasattr(config, 'metric_type'):
        metric_type = config.metric_type
    else:
        metric_type = 'accuracy'
    if metric_type == 'pearson':
        train_accuracy = metrics.pearson_score(
            labels=train_labels,
            pred=train_logits,
            REDUCTION=tf.reduce_mean)
        val_accuracy = metrics.pearson_score(
            labels=val_labels,
            pred=val_logits,
            REDUCTION=tf.reduce_mean)
    else:
        train_accuracy = metrics.class_accuracy(
            labels=train_labels,
            logits=train_logits)
        val_accuracy = metrics.class_accuracy(
            labels=val_labels,
            logits=val_logits)
    tf.summary.scalar('train_accuracy', train_accuracy)
    tf.summary.scalar('val_accuracy', val_accuracy)
    if tensorboard_images:
        tf.summary.image('train_images', train_images)
        tf.summary.image('val_images', val_images)

    # Build optimizer
    train_op = optimizers.get_optimizer(
        train_loss,
        config['lr'],
        config['optimizer'])

    # Initialize tf variables
    saver = tf.train.Saver(
        var_list=tf.global_variables())
    summary_op = tf.summary.merge_all()
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    sess.run(
        tf.group(
            tf.global_variables_initializer(),
            tf.local_variables_initializer()))
    summary_writer = tf.summary.FileWriter(
        directories['summaries'],
        sess.graph)
    if not placeholders:
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    else:
        coord, threads = None, None

    # Create dictionaries of important training and validation information
    train_dict = {
        'train_loss': train_loss,
        'train_images': train_images,
        'train_labels': train_labels,
        'train_op': train_op,
        'train_accuracy': train_accuracy
    }
    if isinstance(train_hgru_act, dict):
        for k, v in train_hgru_act.iteritems():
            train_dict[k] = v
    else:
        train_dict['activity'] = train_hgru_act
    val_dict = {
        'val_loss': val_loss,
        'val_images': val_images,
        'val_labels': val_labels,
        'val_accuracy': val_accuracy,
    }
    if isinstance(val_hgru_act, dict):
        for k, v in val_hgru_act.iteritems():
            val_dict[k] = v
    else:
        val_dict['activity'] = val_hgru_act

    # Count parameters
    num_params = np.sum(
        [np.prod(x.get_shape().as_list()) for x in tf.trainable_variables()])
    print 'Model has approximately %s trainable params.' % num_params

    # Create datastructure for saving data
    ds = data_structure.data(
        batch_size=config.batch_size,
        validation_iters=config.validation_iters,
        num_validation_evals=config.num_validation_evals,
        shuffle_val=config.shuffle_val,
        lr=config.lr,
        loss_function=config.loss_function,
        optimizer=config.optimizer,
        model_name=config.model_name,
        dataset=config.dataset,
        num_params=num_params,
        output_directory=config.results)

    # Start training loop
    training.training_loop(
        config=config,
        coord=coord,
        sess=sess,
        summary_op=summary_op,
        summary_writer=summary_writer,
        saver=saver,
        threads=threads,
        directories=directories,
        train_dict=train_dict,
        val_dict=val_dict,
        exp_label=exp_label,
        data_structure=ds,
        placeholders=placeholders)
Пример #10
0
def build_model(exp_params,
                config,
                log,
                dt_string,
                gpu_device,
                cpu_device,
                use_db=True,
                add_config=None,
                placeholders=False,
                checkpoint=None,
                test=False,
                map_out=None,
                num_batches=None,
                tensorboard_images=False):
    """Standard model building routines."""
    config = py_utils.add_to_config(d=exp_params, config=config)
    if not hasattr(config, 'force_path'):
        config.force_path = False
    exp_label = '%s_%s_%s' % (exp_params['model'], exp_params['experiment'],
                              py_utils.get_dt_stamp())
    directories = py_utils.prepare_directories(config, exp_label)
    dataset_module = py_utils.import_module(pre_path=config.dataset_classes,
                                            module=config.train_dataset)
    train_dataset_module = dataset_module.data_processing()
    if not config.force_path:
        (train_data, _, _) = py_utils.get_data_pointers(
            dataset=train_dataset_module.output_name,
            base_dir=config.tf_records,
            local_dir=config.local_tf_records,
            cv='train')
    else:
        train_data = train_dataset_module.train_path
    dataset_module = py_utils.import_module(pre_path=config.dataset_classes,
                                            module=config.val_dataset)
    val_dataset_module = dataset_module.data_processing()
    if not config.force_path:
        val_data, _, _ = py_utils.get_data_pointers(
            dataset=val_dataset_module.output_name,
            base_dir=config.tf_records,
            local_dir=config.local_tf_records,
            cv='val')
    else:
        val_data = train_dataset_module.val_path
        # val_means_image, val_means_label = None, None

    # Create data tensors
    if hasattr(train_dataset_module, 'aux_loss'):
        train_aux_loss = train_dataset_module.aux_loss
    else:
        train_aux_loss = None
    with tf.device(cpu_device):
        if placeholders and not test:
            # Train with placeholders
            (pl_train_images, pl_train_labels, pl_val_images, pl_val_labels,
             train_images, train_labels, val_images,
             val_labels) = get_placeholders(train_dataset=train_dataset_module,
                                            val_dataset=val_dataset_module,
                                            config=config)
            train_module_data = train_dataset_module.get_data()
            val_module_data = val_dataset_module.get_data()
            placeholders = {
                'train': {
                    'images': train_module_data[0]['train'],
                    'labels': train_module_data[1]['train']
                },
                'val': {
                    'images': val_module_data[0]['val'],
                    'labels': val_module_data[1]['val']
                },
            }
            train_aux, val_aux = None, None
        elif placeholders and test:
            test_dataset_module = train_dataset_module
            # Test with placeholders
            (pl_test_images, pl_test_labels, test_images,
             test_labels) = get_placeholders_test(
                 test_dataset=test_dataset_module, config=config)
            test_module_data = test_dataset_module.get_data()
            placeholders = {
                'test': {
                    'images': test_module_data[0]['test'],
                    'labels': test_module_data[1]['test']
                },
            }
            train_aux, val_aux = None, None
        else:
            train_images, train_labels, train_aux = data_loader.inputs(
                dataset=train_data,
                batch_size=config.train_batch_size,
                model_input_image_size=train_dataset_module.
                model_input_image_size,
                tf_dict=train_dataset_module.tf_dict,
                data_augmentations=config.train_augmentations,
                num_epochs=config.epochs,
                aux=train_aux_loss,
                tf_reader_settings=train_dataset_module.tf_reader,
                shuffle=config.shuffle_train)
            if hasattr(val_dataset_module, 'val_model_input_image_size'):
                val_dataset_module.model_input_image_size = val_dataset_module.val_model_input_image_size
            val_images, val_labels, val_aux = data_loader.inputs(
                dataset=val_data,
                batch_size=config.val_batch_size,
                model_input_image_size=val_dataset_module.
                model_input_image_size,
                tf_dict=val_dataset_module.tf_dict,
                data_augmentations=config.val_augmentations,
                num_epochs=None,
                tf_reader_settings=val_dataset_module.tf_reader,
                shuffle=config.shuffle_val)

    # Build training and val models
    model_spec = py_utils.import_module(module=config.model,
                                        pre_path=config.model_classes)
    if hasattr(train_dataset_module, 'force_output_size'):
        train_dataset_module.output_size = train_dataset_module.force_output_size
    if hasattr(val_dataset_module, 'force_output_size'):
        val_dataset_module.output_size = val_dataset_module.force_output_size
    if hasattr(config, 'loss_function'):
        train_loss_function = config.loss_function
        val_loss_function = config.loss_function
    else:
        train_loss_function = config.train_loss_function
        val_loss_function = config.val_loss_function

    # Route test vs train/val
    h_check = [
        x for x in tf.trainable_variables()
        if 'homunculus' in x.name or 'humonculus' in x.name
    ]
    if not hasattr(config, 'default_restore'):
        config.default_restore = False
    if test:
        assert len(gpu_device) == 1, 'Testing only works with 1 gpu.'
        gpu_device = gpu_device[0]
        with tf.device(gpu_device):
            if not placeholders:
                test_images = val_images
                test_labels = val_labels
                test_dataset_module = val_dataset_module
            test_logits, test_vars = model_spec.build_model(
                data_tensor=test_images,
                reuse=None,
                training=False,
                output_shape=test_dataset_module.output_size)
        if test_logits.dtype is not tf.float32:
            test_logits = tf.cast(test_logits, tf.float32)

        # Derive loss
        if not hasattr(config, 'test_loss_function'):
            test_loss_function = val_loss_function
        else:
            test_loss_function = config.test_loss_function
        test_loss = losses.derive_loss(labels=test_labels,
                                       logits=test_logits,
                                       loss_type=test_loss_function)

        # Derive score
        test_score = losses.derive_score(labels=test_labels,
                                         logits=test_logits,
                                         loss_type=test_loss_function,
                                         score_type=config.score_function)

        # Initialize model
        (sess, saver, summary_op, summary_writer, coord, threads,
         restore_saver) = initialize_tf(config=config,
                                        placeholders=placeholders,
                                        ckpt=checkpoint,
                                        default_restore=config.default_restore,
                                        directories=directories)

        if placeholders:
            proc_images = test_images
            proc_labels = test_labels
            test_images = pl_test_images
            test_labels = pl_test_labels

        _, H, W, _ = test_vars['model_output_y'].shape
        jacobian = tf.gradients(test_logits, test_vars['model_output_x'])[
            0]  # g.batch_jacobian(test_vars['model_output_x'], test_images)
        test_dict = {
            'test_loss': test_loss,
            'test_score': test_score,
            'test_images': test_images,
            'test_labels': test_labels,
            'test_logits': test_logits,
            'test_jacobian': jacobian
        }
        if placeholders:
            test_dict['test_proc_images'] = proc_images
            test_dict['test_proc_labels'] = proc_labels
        if len(h_check):
            test_dict['homunculus'] = h_check[0]
        if isinstance(test_vars, dict):
            for k, v in test_vars.iteritems():
                test_dict[k] = v
        else:
            test_dict['activity'] = test_vars
    else:
        train_losses, val_losses, tower_grads, norm_updates = [], [], [], []
        train_scores, val_scores = [], []
        train_image_list, train_label_list = [], []
        val_image_list, val_label_list = [], []
        train_reuse = None
        if not hasattr(config, 'lr_schedule'):
            config.lr_schedule = None
        if hasattr(config, 'loss_function'):
            train_loss_function = config.loss_function
            val_loss_function = config.loss_function
        else:
            train_loss_function = config.train_loss_function
            val_loss_function = config.val_loss_function

        # Prepare loop
        if not placeholders:
            train_batch_queue = tf_fun.get_batch_queues(images=train_images,
                                                        labels=train_labels,
                                                        gpu_device=gpu_device)
            val_batch_queue = tf_fun.get_batch_queues(images=val_images,
                                                      labels=val_labels,
                                                      gpu_device=gpu_device)

        config.lr = optimizers.get_lr_schedule(lr=config.lr,
                                               lr_schedule=config.lr_schedule)
        opt = optimizers.get_optimizers(optimizer=config.optimizer,
                                        lr=config.lr,
                                        dtype=train_images.dtype)
        with tf.device(cpu_device):
            global_step = tf.train.get_or_create_global_step()
            for i, gpu in enumerate(gpu_device):
                # rs = tf.AUTO_REUSE if i > 0 else None
                with tf.device(gpu):
                    with tf.name_scope('tower_%d' % i) as scope:
                        # Prepare tower data
                        if placeholders:
                            # Multi-gpu: will have to split
                            # train_images per gpu by hand
                            train_image_batch = train_images
                            val_image_batch = val_images
                            train_label_batch = train_labels
                            val_label_batch = val_labels
                        else:
                            (train_image_batch,
                             train_label_batch) = train_batch_queue.dequeue()
                            (val_image_batch,
                             val_label_batch) = val_batch_queue.dequeue()
                        train_image_list += [train_image_batch]
                        train_label_list += [train_label_batch]
                        val_image_list += [val_image_batch]
                        val_label_list += [val_label_batch]

                        # Build models
                        train_logits, train_vars = model_spec.build_model(
                            data_tensor=train_image_batch,
                            reuse=train_reuse,
                            training=True,
                            output_shape=train_dataset_module.output_size)
                        num_training_vars = len(tf.trainable_variables())
                        val_logits, val_vars = model_spec.build_model(
                            data_tensor=val_image_batch,
                            reuse=True,
                            training=False,
                            output_shape=val_dataset_module.output_size)
                        num_validation_vars = len(tf.trainable_variables())
                        assert num_training_vars == num_validation_vars, \
                            'Found a different # of train and val variables.'
                        train_reuse = True

                        # Derive losses
                        if train_logits.dtype is not tf.float32:
                            train_logits = tf.cast(train_logits, tf.float32)
                        if val_logits.dtype is not tf.float32:
                            val_logits = tf.cast(val_logits, tf.float32)
                        train_loss = losses.derive_loss(
                            labels=train_label_batch,
                            logits=train_logits,
                            images=train_image_batch,
                            loss_type=train_loss_function)
                        val_loss = losses.derive_loss(
                            labels=val_label_batch,
                            logits=val_logits,
                            images=val_image_batch,
                            loss_type=val_loss_function)

                        # Derive score
                        train_score = losses.derive_score(
                            labels=train_labels,
                            logits=train_logits,
                            loss_type=train_loss_function,
                            score_type=config.score_function)
                        val_score = losses.derive_score(
                            labels=val_labels,
                            logits=val_logits,
                            loss_type=val_loss_function,
                            score_type=config.score_function)

                        # Add aux losses if requested
                        if hasattr(model_spec, 'weight_decay'):
                            wd = (model_spec.weight_decay() * tf.add_n([
                                tf.nn.l2_loss(v)
                                for v in tf.trainable_variables()
                                if 'batch_normalization' not in v.name
                                and 'horizontal' not in v.name
                                and 'mu' not in v.name and 'beta' not in v.name
                                and 'intercept' not in v.name
                            ]))
                            tf.summary.scalar('weight_decay', wd)
                            train_loss += wd

                        if hasattr(model_spec, 'bsds_weight_decay'):
                            wd = (model_spec.bsds_weight_decay()['l2'] *
                                  tf.add_n([
                                      tf.nn.l2_loss(v)
                                      for v in tf.trainable_variables()
                                      if 'horizontal' not in v.name
                                      and 'norm' not in v.name
                                  ]))
                            tf.summary.scalar('weight_decay_readout', wd)
                            train_loss += wd
                            wd = (model_spec.bsds_weight_decay()['l1'] *
                                  tf.add_n([
                                      tf.reduce_sum(tf.abs(v))
                                      for v in tf.trainable_variables()
                                      if 'horizontal' in v.name
                                  ]))
                            tf.summary.scalar('weight_decay_horizontal', wd)
                            train_loss += wd

                        if hasattr(model_spec, 'orthogonal'):
                            weights = [
                                v for v in tf.trainable_variables()
                                if 'horizontal' in v.name
                            ]
                            assert len(weights) is not None, \
                                'No horizontal weights for laplace.'
                            wd = model_spec.orthogonal() * tf.add_n(
                                [tf_fun.orthogonal(w) for w in weights])
                            tf.summary.scalar('weight_decay', wd)
                            train_loss += wd

                        if hasattr(model_spec, 'laplace'):
                            weights = [
                                v for v in tf.trainable_variables()
                                if 'horizontal' in v.name
                            ]
                            assert len(weights) is not None, \
                                'No horizontal weights for laplace.'
                            wd = model_spec.laplace() * tf.add_n(
                                [tf_fun.laplace(w) for w in weights])
                            tf.summary.scalar('weight_decay', wd)
                            train_loss += wd

                        # Derive auxilary losses
                        if hasattr(config, 'aux_loss'):
                            aux_loss_type, scale = config.aux_loss.items()[0]
                            for k, v in train_vars.iteritems():
                                # if k in train_dataset_module.aux_loss.keys():
                                # (
                                #     aux_loss_type,
                                #     scale
                                # ) = train_dataset_module.aux_loss[k]
                                train_loss += (losses.derive_loss(
                                    labels=train_labels,
                                    logits=v,
                                    loss_type=aux_loss_type) * scale)

                        # Gather everything
                        train_losses += [train_loss]
                        val_losses += [val_loss]
                        train_scores += [train_score]
                        val_scores += [val_score]

                        # Compute and store gradients
                        with tf.variable_scope(tf.get_variable_scope(),
                                               reuse=tf.AUTO_REUSE):
                            grads = opt.compute_gradients(train_loss)
                        optimizers.check_grads(grads)
                        tower_grads += [grads]

                        # Gather normalization variables
                        norm_updates += [
                            tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                              scope=scope)
                        ]

        # Recompute and optimize gradients
        grads = optimizers.average_gradients(tower_grads)
        if hasattr(config, 'clip_gradients') and config.clip_gradients:
            grads = optimizers.apply_grad_clip(grads, config.clip_gradients)
        op_vars = []
        if hasattr(config, 'exclusion_lr') and hasattr(config,
                                                       'exclusion_scope'):
            grads_0 = [
                x for x in grads if config.exclusion_scope not in x[1].name
            ]
            grads_1 = [x for x in grads if config.exclusion_scope in x[1].name]
            op_vars_0 = optimizers.apply_gradients(opt=opt,
                                                   grads=grads_0,
                                                   global_step=global_step)
            opt_1 = optimizers.get_optimizers(optimizer=config.optimizer,
                                              lr=config.exclusion_lr,
                                              dtype=train_images.dtype)
            op_vars_1 = optimizers.apply_gradients(opt=opt_1,
                                                   grads=grads_1,
                                                   global_step=global_step)
            op_vars += [op_vars_0]
            op_vars += [op_vars_1]
        else:
            op_vars += [
                optimizers.apply_gradients(opt=opt,
                                           grads=grads,
                                           global_step=global_step)
            ]
        if not hasattr(config, 'variable_moving_average'):
            config.variable_moving_average = False
        if config.variable_moving_average:
            variable_averages = tf.train.ExponentialMovingAverage(
                config.variable_moving_average, global_step)
            op_vars += [variable_averages.apply(tf.trainable_variables())]
        if len(norm_updates):
            op_vars += [tf.group(*norm_updates)]
        train_op = tf.group(*op_vars)

        # Summarize losses and scores
        train_loss = tf.reduce_mean(train_losses)
        val_loss = tf.reduce_mean(val_losses)
        train_score = tf.reduce_mean(train_scores)
        val_score = tf.reduce_mean(val_scores)
        if len(train_image_list) > 1:
            train_image_list = tf.stack(train_image_list, axis=0)
            train_label_list = tf.stack(train_label_list, axis=0)
        else:
            train_image_list = train_image_list[0]
            train_label_list = train_label_list[0]
        if len(val_image_list) > 1:
            val_image_list = tf.stack(val_image_list, axis=0)
            val_label_list = tf.stack(val_label_list, axis=0)
        else:
            val_image_list = val_image_list[0]
            val_label_list = val_label_list[0]

        tf.summary.scalar('train_loss', train_loss)
        tf.summary.scalar('val_loss', val_loss)
        if tensorboard_images:
            tf.summary.image('train_images', train_images)
            tf.summary.image('val_images', val_images)

        # Initialize model
        (sess, saver, summary_op, summary_writer, coord, threads,
         restore_saver) = initialize_tf(config=config,
                                        placeholders=placeholders,
                                        ckpt=checkpoint,
                                        default_restore=config.default_restore,
                                        directories=directories)

        # Create dictionaries of important training and validation information
        if placeholders:
            proc_train_images = train_images
            proc_train_labels = train_labels
            proc_val_images = val_images
            proc_val_labels = val_labels
            train_images = pl_train_images
            train_labels = pl_train_labels
            val_images = pl_val_images
            val_labels = pl_val_labels

        train_dict = {
            'train_loss': train_loss,
            'train_score': train_score,
            'train_images': train_image_list,
            'train_labels': train_label_list,
            'train_logits': train_logits,
            'train_op': train_op
        }

        if placeholders:
            train_dict['proc_train_images'] = proc_train_images
            train_dict['proc_train_labels'] = proc_train_labels
        if train_aux is not None:
            train_dict['train_aux'] = train_aux
        if tf.contrib.framework.is_tensor(config.lr):
            train_dict['lr'] = config.lr
        else:
            train_dict['lr'] = tf.constant(config.lr)

        if isinstance(train_vars, dict):
            for k, v in train_vars.iteritems():
                train_dict[k] = v
        else:
            train_dict['activity'] = train_vars
        if hasattr(config, 'save_gradients') and config.save_gradients:
            grad = tf.gradients(train_logits, train_images)[0]
            if grad is not None:
                train_dict['gradients'] = grad
            else:
                log.warning('Could not calculate val gradients.')

        val_dict = {
            'val_loss': val_loss,
            'val_score': val_score,
            'val_images': val_image_list,
            'val_logits': val_logits,
            'val_labels': val_label_list,
        }
        if placeholders:
            val_dict['proc_val_images'] = proc_val_images
            val_dict['proc_val_labels'] = proc_val_labels
        if val_aux is not None:
            val_dict['aux'] = val_aux

        if isinstance(val_vars, dict):
            for k, v in val_vars.iteritems():
                val_dict[k] = v
        else:
            val_dict['activity'] = val_vars
        if hasattr(config, 'save_gradients') and config.save_gradients:
            grad = tf.gradients(val_logits, val_images)[0]
            if grad is not None:
                val_dict['gradients'] = grad
            else:
                log.warning('Could not calculate val gradients.')
        if len(h_check):
            val_dict['homunculus'] = h_check[0]

    # Add optional info to the config
    if add_config is not None:
        extra_list = add_config.split(',')
        for eidx, extra in enumerate(extra_list):
            setattr(config, 'extra_%s' % eidx, extra)

    # Count parameters
    num_params = tf_fun.count_parameters(var_list=tf.trainable_variables())
    print 'Model has approximately %s trainable params.' % num_params
    if test:
        return training.test_loop(log=log,
                                  config=config,
                                  sess=sess,
                                  summary_op=summary_op,
                                  summary_writer=summary_writer,
                                  saver=saver,
                                  restore_saver=restore_saver,
                                  directories=directories,
                                  test_dict=test_dict,
                                  exp_label=exp_label,
                                  num_params=num_params,
                                  checkpoint=checkpoint,
                                  num_batches=num_batches,
                                  save_weights=config.save_weights,
                                  save_checkpoints=config.save_checkpoints,
                                  save_activities=config.save_activities,
                                  save_gradients=config.save_gradients,
                                  map_out=map_out,
                                  placeholders=placeholders)
    else:
        # Start training loop
        training.training_loop(log=log,
                               config=config,
                               coord=coord,
                               sess=sess,
                               summary_op=summary_op,
                               summary_writer=summary_writer,
                               saver=saver,
                               restore_saver=restore_saver,
                               threads=threads,
                               directories=directories,
                               train_dict=train_dict,
                               val_dict=val_dict,
                               exp_label=exp_label,
                               num_params=num_params,
                               checkpoint=checkpoint,
                               use_db=use_db,
                               save_weights=config.save_weights,
                               save_checkpoints=config.save_checkpoints,
                               save_activities=config.save_activities,
                               save_gradients=config.save_gradients,
                               placeholders=placeholders)
Пример #11
0
def train_classifier_on_model(train_pointer, model_type, model_weights,
                              selected_layer, config):

    # Make output directories if they do not exist
    dt_stamp = '%s_%s_%s_%s' % (model_type, selected_layer, str(
        config.lr)[2:], re.split('\.', str(datetime.now()))[0].replace(
            ' ', '_').replace(':', '_').replace('-', '_'))
    config.checkpoint_directory = os.path.join(config.checkpoint_directory,
                                               dt_stamp)  # timestamp this run
    dir_list = [config.checkpoint_directory]
    [utilities.make_dir(d) for d in dir_list]

    print '-' * 60
    print 'Training %s over a %s. Saving to %s' % (config.classifier,
                                                   model_type, dt_stamp)
    print '-' * 60

    dcn_flavor = import_cnn(model_type)

    # Prepare data on CPU
    with tf.device('/cpu:0'):
        train_images, train_labels, train_files = inputs(
            train_pointer,
            config.train_batch,
            config.train_image_size,
            config.model_image_size[:2],
            num_epochs=config.epochs,
            shuffle_batch=True)

    # Prepare pretrained model on GPU
    with tf.device('/gpu:0'):
        with tf.variable_scope('cnn'):
            if 'ckpt' in model_weights:
                cnn = dcn_flavor.model()
            else:
                cnn = dcn_flavor.model(weight_path=model_weights)
            cnn.build(train_images)
            sample_layer = cnn[selected_layer]
            weights, yhat, classifier, class_loss = tf_loss.choose_classifier(
                sample_layer=sample_layer, y=train_labels, config=config)

    saver = tf.train.Saver(tf.all_variables(), max_to_keep=10)

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(tf.initialize_all_variables(),
                 tf.initialize_local_variables()))
    # Set up exemplar threading
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Start training loop
    np.save(os.path.join(config.checkpoint_directory, 'training_config_file'),
            config)
    step, losses = 0, []
    if 'ckpt' in model_weights:
        saver.restore(sess, model_weights)
    try:
        print 'Training model'
        while not coord.should_stop():
            start_time = time.time()
            _, loss_value, labels = sess.run(
                [classifier, class_loss, train_labels])
            losses.append(loss_value)
            duration = time.time() - start_time
            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
            # End iteration
            print_status(step, loss_value, config, duration, 0, '')
            step += 1

    except tf.errors.OutOfRangeError:
        print 'Done training for %d epochs, %d steps.' % (config.epochs, step)
        print 'Saved to: %s' % config.checkpoint_directory
    finally:
        ckpt_path = os.path.join(config.checkpoint_directory,
                                 'model_' + str(step) + '.ckpt')
        saver.save(sess, ckpt_path, global_step=step)
        print 'Saved checkpoint to: %s' % ckpt_path
        coord.request_stop()
    coord.join(threads)
    sess.close()
    # Return the final checkpoint for testing
    return ckpt_path, config.checkpoint_directory
Пример #12
0
def plot_fits(
        experiment='760_cells_2017_11_04_16_29_09',
        query_db=False,
        num_models=3,
        template_exp='ALLEN_selected_cells_1',
        process_pnodes=False,
        allen_dir='/home/drew/Documents/Allen_Brain_Observatory',
        output_dir='tests/ALLEN_files',
        stimulus_type='tfrecord',
        top_n=1,
        grad='lrp',
        target_layer='conv1_1',  # conv1_1, sep_conv1_1, dog1_1
        target_model='conv2d'):  # conv2d, sep_conv2d, dog
    """Plot fits across the RF.
    experiment: Name of Allen experiment you're plotting.
    query_db: Use data from DB versus data in Numpys.
    num_models: The number of architectures you're testing.
    template_exp: The name of the contextual_circuit model template used."""
    sys.path.append(allen_dir)
    from allen_config import Allen_Brain_Observatory_Config
    if process_pnodes:
        from pnodes_declare_datasets_loop import query_hp_hist, sel_exp_query
    else:
        from declare_datasets_loop import query_hp_hist, sel_exp_query
    config = Config()
    main_config = Allen_Brain_Observatory_Config()
    db_config = credentials.postgresql_connection()
    files = glob(
        os.path.join(
            allen_dir,
            main_config.multi_exps,
            experiment, '*.npz'))
    assert len(files), 'Couldn\'t find files.'
    out_data, xs, ys = [], [], []
    perfs, model_types, exps, arg_perf = [], [], [], []
    count = 0
    for f in files:
        data = np.load(f)
        d = {
            'x': data['rf_data'].item()['on_center_x'],
            'y': data['rf_data'].item()['on_center_y'],
            # x: files['dataset_method'].item()['x_min'],
            # y: files['dataset_method'].item()['y_min'],
        }
        exp_name = {
            'experiment_name': data['dataset_method'].item()[
                'experiment_name']}
        if query_db:
            perf = query_hp_hist(
                exp_name['experiment_name'],
                db_config=db_config)
            if perf is None:
                print 'No fits for: %s' % exp_name['experiment_name']
            else:
                raise NotImplementedError
                d['perf'] = perf
                d['max_val'] = np.max(perf)
                out_data += [d]
                xs += [np.round(d['x'])]
                ys += [np.round(d['y'])]
                perfs += [np.max(d['perf'])]
                count += 1
        else:
            data_files = glob(
                os.path.join(
                    main_config.ccbp_exp_evals,
                    exp_name['experiment_name'],
                    '*val_losses.npy'))  # Scores has preds, labels has GT
            for gd in data_files:
                mt = gd.split(
                    os.path.sep)[-1].split(
                        template_exp + '_')[-1].split('_' + 'val')[0]
                it_data = np.load(gd).item()
                sinds = np.asarray(it_data.keys())[np.argsort(it_data.keys())]
                sit_data = [it_data[idx] for idx in sinds]
                d['perf'] = sit_data
                d['max_val'] = np.max(sit_data)
                d['max_idx'] = np.argmax(sit_data)
                d['mt'] = mt
                out_data += [d]
                xs += [np.round(d['x'])]
                ys += [np.round(d['y'])]
                perfs += [np.max(sit_data)]
                arg_perf += [np.argmax(sit_data)]
                exps += [gd.split(os.path.sep)[-2]]
                model_types += [mt]
                count += 1

    # Package as a df
    xs = np.round(np.asarray(xs)).astype(int)
    ys = np.round(np.asarray(ys)).astype(int)
    perfs = np.asarray(perfs)
    arg_perf = np.asarray(arg_perf)
    exps = np.asarray(exps)
    model_types = np.asarray(model_types)

    # Filter to only keep top-scoring values at each x/y (dirty trick)
    fxs, fys, fperfs, fmodel_types, fexps, fargs = [], [], [], [], [], []
    xys = np.vstack((xs, ys)).transpose()
    cxy = np.ascontiguousarray(  # Unique rows
        xys).view(
        np.dtype((np.void, xys.dtype.itemsize * xys.shape[1])))
    _, idx = np.unique(cxy, return_index=True)
    uxys = xys[idx]
    scores = []
    for xy in uxys:
        sel_idx = (xys == xy).sum(axis=-1) == 2
        sperfs = perfs[sel_idx]
        sexps = exps[sel_idx]
        sargs = arg_perf[sel_idx]
        sel_mts = model_types[sel_idx]
        # Only get top conv/sep spots
        sperfs = sperfs[sel_mts != 'dog']
        sperfs = sperfs[sel_mts != 'DoG']
        scores += [sperfs.mean() / sperfs.std()]
    best_fits = np.argmax(np.asarray(scores))
    xs = np.asarray([uxys[best_fits][0]])
    ys = np.asarray([uxys[best_fits][1]])
    sel_idx = (xys == uxys[best_fits]).sum(axis=-1) == 2
    perfs = np.asarray(perfs[sel_idx])
    exps = np.asarray(exps[sel_idx])
    model_types = np.asarray(model_types[sel_idx])
    umt, model_types_inds = np.unique(model_types, return_inverse=True)

    # Get weights for the top-n fitting models of each type
    it_perfs = perfs[model_types == target_model]
    it_exps = exps[model_types == target_model]
    # it_args = arg_perf[model_types == target_model]
    sorted_perfs = np.argsort(it_perfs)[::-1][:top_n]
    for idx in sorted_perfs:
        perf = sel_exp_query(
            experiment_name=it_exps[idx],
            model=target_model,
            db_config=db_config)
        # perf_steps = np.argsort([v['training_step'] for v in perf])[::-1]
        perf_steps = [v['validation_loss'] for v in perf]
        max_score = np.max(perf_steps)
        arg_perf_steps = np.argmax(perf_steps)
        sel_model = perf[arg_perf_steps]  # perf_steps[it_args[idx]]]
        print 'Using %s' % sel_model
        model_file = sel_model['ckpt_file'].split('.')[0]
        model_ckpt = '%s.ckpt-%s' % (
            model_file,
            model_file.split(os.path.sep)[-1].split('_')[-1])
        model_meta = '%s.meta' % model_ckpt

        # Pull stimuli
        stim_dir = os.path.join(
            main_config.tf_record_output,
            sel_model['experiment_name'])
        stim_files = glob(stim_dir + '*')
        stim_meta_file = [x for x in stim_files if 'meta' in x][0]
        # stim_val_data = [x for x in stim_files if 'val.tfrecords' in x][0]
        stim_val_data = [x for x in stim_files if 'train.tfrecords' in x][0]
        stim_val_mean = [x for x in stim_files if 'train_means' in x][0]
        assert stim_meta_file is not None
        assert stim_val_data is not None
        assert stim_val_mean is not None
        stim_meta_data = np.load(stim_meta_file).item()
        rf_stim_meta_data = stim_meta_data['rf_data']
        stim_mean_data = np.load(
            stim_val_mean).items()[0][1].item()['image']['mean']

        # Store sparse noise for reference
        sparse_rf_on = {
            'center_x': rf_stim_meta_data.get('on_center_x', None),
            'center_y': rf_stim_meta_data.get('on_center_y', None),
            'width_x': rf_stim_meta_data.get('on_width_x', None),
            'width_y': rf_stim_meta_data.get('on_width_y', None),
            'distance': rf_stim_meta_data.get('on_distance', None),
            'area': rf_stim_meta_data.get('on_area', None),
            'rotation': rf_stim_meta_data.get('on_rotation', None),
        }
        sparse_rf_off = {
            'center_x': rf_stim_meta_data.get('off_center_x', None),
            'center_y': rf_stim_meta_data.get('off_center_y', None),
            'width_x': rf_stim_meta_data.get('off_width_x', None),
            'width_y': rf_stim_meta_data.get('off_width_y', None),
            'distance': rf_stim_meta_data.get('off_distance', None),
            'area': rf_stim_meta_data.get('off_area', None),
            'rotation': rf_stim_meta_data.get('off_rotation', None),
        }
        sparse_rf = {'on': sparse_rf_on, 'off': sparse_rf_off}

        # Pull responses
        dataset_module = py_utils.import_module(
            model_dir=config.dataset_info,
            dataset=sel_model['experiment_name'])
        dataset_module = dataset_module.data_processing()
        with tf.device('/cpu:0'):
            if stimulus_type == 'sparse_noise':
                pass
            elif stimulus_type == 'drifting_grating':
                pass
            elif stimulus_type == 'tfrecord':
                val_images, val_labels = data_loader.inputs(
                    dataset=stim_val_data,
                    batch_size=1,
                    model_input_image_size=dataset_module.model_input_image_size,
                    tf_dict=dataset_module.tf_dict,
                    data_augmentations=[None],  # dataset_module.preprocess,
                    num_epochs=1,
                    tf_reader_settings=dataset_module.tf_reader,
                    shuffle=False
                )

        # Mean normalize
        log = logger.get(os.path.join(output_dir, 'sta_logs', target_model))
        data_dir = os.path.join(output_dir, 'data', target_model)
        py_utils.make_dir(data_dir)
        sys.path.append(os.path.join('models', 'structs', sel_model['experiment_name']))
        model_dict = __import__(target_model) 
        if hasattr(model_dict, 'output_structure'):
            # Use specified output layer
            output_structure = model_dict.output_structure
        else:
            output_structure = None
        model = model_utils.model_class(
            mean=stim_mean_data,
            training=True,  # FIXME
            output_size=dataset_module.output_size)
        with tf.device('/gpu:0'):
            with tf.variable_scope('cnn') as scope:
                val_scores, model_summary = model.build(
                    data=val_images,
                    layer_structure=model_dict.layer_structure,
                    output_structure=output_structure,
                    log=log,
                    tower_name='cnn')
                if grad == 'vanilla':
                    grad_image = tf.gradients(model.output, val_images)[0]
                elif grad == 'lrp':
                    eval_graph = tf.Graph()
                    with eval_graph.as_default():
                        with eval_graph.gradient_override_map(
                            {'Relu': 'GradLRP'}):
                            grad_image = tf.gradients(model.output, val_images)[0]
                elif grad == 'cam':
                    eval_graph = tf.Graph()
                    with eval_graph.as_default():
                        with eval_graph.gradient_override_map(
                            {'Relu': 'GuidedRelu'}):
                            grad_image = tf.gradients(model.output, val_images)[0]
                else:
                    raise NotImplementedError
        print(json.dumps(model_summary, indent=4))

        # Set up summaries and saver
        saver = tf.train.Saver(tf.global_variables())
        summary_op = tf.summary.merge_all()

        # Initialize the graph
        sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

        # Need to initialize both of these if supplying num_epochs to inputs
        sess.run(
            tf.group(
                tf.global_variables_initializer(),
                tf.local_variables_initializer())
            )
        saver.restore(sess, model_ckpt)

        # Set up exemplar threading
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        if target_model == 'conv2d':
            fname = [
                x for x in tf.global_variables()
                if 'conv1_1_filters:0' in x.name]
        elif target_model == 'sep_conv2d':
            fname = [
                x for x in tf.global_variables()
                if 'sep_conv1_1_filters:0' in x.name]
        elif target_model == 'dog' or target_model == 'DoG':
            fname = [
                x for x in tf.global_variables()
                if 'dog1_1_filters:0' in x.name]
        else:
            raise NotImplementedError
        val_tensors = {
            'images': val_images,
            'labels': val_labels,
            'filts': fname,
            'responses': model.output,  # model[target_layer],
            'grads': grad_image
        }
        all_images, all_preds, all_grads, all_responses = [], [], [], []
        step = 0
        try:
            while not coord.should_stop():
                val_vals = sess.run(val_tensors.values())
                val_dict = {k: v for k, v in zip(val_tensors.keys(), val_vals)}
                all_images += [val_dict['images']]
                all_responses += [val_dict['responses']]
                all_preds += [val_dict['labels'].squeeze()]
                all_grads += [val_dict['grads'].squeeze()]
                print 'Finished step %s' % step
                step += 1
        except:
            print 'Finished tfrecords'
        finally:
            coord.request_stop()
        coord.join(threads)
        sess.close()

        # Process and save data
        # if target_model != 'dog':
        #     filters = val_dict['filts'][0].squeeze().transpose(2, 0, 1)
        all_images = np.concatenate(all_images).squeeze()
        all_grads = np.asarray(all_grads)
        all_preds = np.asarray(all_preds).reshape(-1, 1)
        all_responses = np.asarray(all_responses).squeeze()

        np.savez(
            os.path.join(data_dir, 'data'),
            images=all_images,
            pred=all_preds,
            # filters=filters,
            grads=all_grads)
        # if target_model != 'dog':
        #     save_mosaic(
        #         maps=filters,  # [0].squeeze().transpose(2, 0, 1),
        #         output=os.path.join(data_dir, '%s_filters' % target_layer),
        #         rc=8,
        #         cc=4,
        #         title='%s filters' % (
        #             target_layer))
        print 'Complete.'
def test_classifier(validation_pointer,
                    model_ckpt,
                    model_dir,
                    model_type,
                    model_weights,
                    selected_layer,
                    config,
                    simulate_subjects=120):

    # Make output directories if they do not exist
    config.checkpoint_directory = model_dir

    print '-' * 60
    print 'Testing the model over a %s. Saving to %s' % (model_type, model_dir)
    print '-' * 60

    dcn_flavor = import_cnn(model_type)

    # Prepare data on CPU
    with tf.device('/cpu:0'):
        val_images, val_labels, val_files = inputs(
            tfrecord_file=validation_pointer,
            batch_size=config.validation_batch,
            im_size=config.validation_image_size,
            model_input_shape=config.model_image_size[:2],
            num_epochs=1,
            data_augmentations=config.validation_augmentations,
            shuffle_batch=True)

    # Prepare pretrained model on GPU
    with tf.device('/gpu:0'):
        with tf.variable_scope('cnn'):
            if 'ckpt' in model_weights:
                cnn = dcn_flavor.model()
            else:
                cnn = dcn_flavor.model(weight_path=model_weights)
            cnn.build(val_images)
            sample_layer = cnn[selected_layer]

    saver = tf.train.Saver(tf.all_variables(), max_to_keep=10)
    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(tf.initialize_all_variables(),
                 tf.initialize_local_variables()))
    # Set up exemplar threading
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Start training loop
    results = {'accs': [], 'preds': [], 'labs': [], 'files': []}

    with open(model_ckpt, 'rb') as fid:
        svc = cPickle.load(fid)
        zscorer = np.load(model_ckpt.split('.')[0] + '_normalization.npz')
    np_path = os.path.join(config.checkpoint_directory, 'validation_results')
    step = 0
    scores, labels = [], []
    if '.ckpt' in model_weights:
        saver.restore(sess, model_weights)
        print 'Restored model from %s' % model_weights
    try:
        print 'Testing model'
        while not coord.should_stop():
            start_time = time.time()
            score, lab, f = sess.run([sample_layer, val_labels, val_files])
            norm_score = (score - zscorer['mu']) / zscorer['sd']
            scores += [norm_score]
            pred = svc.predict(norm_score)
            acc = np.mean(pred == lab)
            results['accs'] += [acc]
            results['preds'] += [pred]
            results['labs'] += [lab]
            results['files'] += [f]
            duration = time.time() - start_time
            print_status(step, 0, config, duration, acc, np_path)
            step += 1

    except tf.errors.OutOfRangeError:
        print 'Done testing.'
    finally:
        np.savez(np_path, **results)
        print 'Saved to: %s' % np_path
        coord.request_stop()
    coord.join(threads)
    sess.close()
    print '%.4f%% correct' % np.mean(results['accs'])

    if simulate_subjects:
        sim_subs = []
        print 'Simulating subjects'
        scores = np.concatenate(scores)
        labels = np.concatenate(results['labs'])
        for sub in tqdm(range(simulate_subjects)):
            it_results = {'accs': [], 'preds': [], 'labs': [], 'files': []}

            neuron_drop = np.random.rand(scores.shape[1]) > .95
            it_scores = np.copy(scores)
            it_scores[:, neuron_drop] = 0
            pred = svc.predict(it_scores)
            acc = np.mean(pred == labels)
            it_results['accs'] += [acc]
            it_results['preds'] += [pred]
            it_results['labs'] += [labels]
            it_results['files'] += [np.concatenate(results['files'])]
            sim_subs += [it_results]
        np.save(np_path + '_sim_subs', sim_subs)
Пример #14
0
def train_and_eval(config):
    """Train and evaluate the model."""

    # Prepare model training
    dt_stamp = re.split(
        '\.', str(datetime.now()))[0].\
        replace(' ', '_').replace(':', '_').replace('-', '_')
    dt_dataset = config.model_type + '_' + dt_stamp + '/'
    config.train_checkpoint = os.path.join(config.model_output,
                                           dt_dataset)  # timestamp this run
    config.summary_dir = os.path.join(config.train_summaries,
                                      config.model_output, dt_dataset)
    dir_list = [config.train_checkpoint, config.summary_dir]
    [make_dir(d) for d in dir_list]

    # Prepare model inputs
    train_data = config.train_data
    validation_data = config.val_data

    # Prepare data on CPU
    with tf.device('/cpu:0'):
        train_images, train_labels = inputs(
            tfrecord_file=train_data,
            batch_size=config.train_batch,
            im_size=config.resize,
            model_input_shape=config.resize,
            train=None,
            img_mean_value='train_mean_big.npz',
            num_epochs=config.num_epochs)
        val_images, val_labels = inputs(tfrecord_file=validation_data,
                                        batch_size=config.train_batch,
                                        im_size=config.resize,
                                        model_input_shape=config.resize,
                                        train=None,
                                        img_mean_value='train_mean_big.npz',
                                        num_epochs=config.num_epochs)
        tf.summary.image('train images', tf.cast(train_images, tf.uint8))
        tf.summary.image('validation images', tf.cast(val_images, tf.uint8))
        tf.summary.image(
            'train labels',
            tf.cast(
                tf.reshape(train_labels, [config.train_batch, 112, 112, 1]),
                tf.float32))
        tf.summary.image(
            'validation labels',
            tf.cast(tf.reshape(val_labels, [config.train_batch, 112, 112, 1]),
                    tf.float32))

    num_train_imgs = 0
    for record in tf.python_io.tf_record_iterator(train_data):
        num_train_imgs += 1

    num_val_imgs = 0
    for record in tf.python_io.tf_record_iterator(validation_data):
        num_val_imgs += 1

    print 'Number of training images', num_train_imgs
    print 'Number of validation images', num_val_imgs

    # Prepare model on GPU
    with tf.device('/gpu:0'):
        with tf.variable_scope('cnn') as scope:

            model = model_struct(config.vgg16_npy_path)
            train_mode = tf.get_variable(name='training', initializer=True)
            model.build(train_images,
                        train_mode=train_mode,
                        batchnorm=config.batch_norm,
                        trainable_layers=config.trainable_layers,
                        config=config,
                        shuffled=False)

            # Prepare the cost function
            cost, train_error_matrix = euclidean_loss(model.prediction,
                                                      train_labels,
                                                      config.train_batch)

            tf.summary.scalar("train cost", cost)

            train_op = tf.train.AdamOptimizer(config.lr).minimize(cost)

            tf.summary.image("prediction", model.prediction)

            # Setup validation op
            if validation_data is not False:
                scope.reuse_variables()
                # Validation graph is the same as training except no batchnorm
                val_model = model_struct(
                    vgg16_npy_path=
                    '/media/data_cifs/ajones/deepgaze/salicon_prep_g11/vgg19.npy'
                )
                val_model.build(val_images,
                                train_mode=train_mode,
                                batchnorm=config.batch_norm,
                                trainable_layers=config.trainable_layers,
                                config=config,
                                shuffled=True)

                # Calculate validation accuracy
                val_cost, val_error_matrix = euclidean_loss(
                    val_model.prediction, val_labels, config.train_batch)

                tf.summary.scalar("validation cost", val_cost)
                tf.summary.image("val prediction", val_model.prediction)

    # Set up summaries and saver
    saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)

    summary_op = tf.summary.merge_all()

    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run([
        tf.group(tf.global_variables_initializer()),
        tf.local_variables_initializer()
    ])
    sess.run([tf.local_variables_initializer()])
    summary_writer = tf.summary.FileWriter(config.summary_dir, sess.graph)

    # Set up exemplar threading
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Start training loop
    np.save(config.train_checkpoint, config)
    step, epoch_no, val_max, losses = 0, 0, 0, []

    epoch_loss_values = []
    best_val_loss = float('inf')

    try:
        while not coord.should_stop():
            start_time = time.time()
            halt = False

            if step % 20 == 0:

                if config.show_output:
                    _, loss_value, val_loss, summary_str, imgs, labs, predictions, cb_logits, logits, te_mat, preds_presoft = sess.run(
                        [
                            train_op, cost, val_cost, summary_op,
                            tf.reshape(train_images[0:3], [3, 224, 224, 3]),
                            tf.reshape(train_labels[0:3], [3, 112, 112]),
                            tf.reshape(model.prediction[0:3], [3, 112, 112]),
                            tf.reshape(model.center_bias_logits[0:3],
                                       [3, 112, 112]),
                            tf.reshape(model.logits[0:3], [3, 112, 112]),
                            tf.reshape(train_error_matrix[0:3], [3, 112, 112]),
                            tf.reshape(model.prediction_presoft[0:3],
                                       [3, 112, 112])
                        ])
                    # plt.imshow(np.mean(sess.run(model.feature_encoder)[0], 2))
                    # plt.show()
                    # import ipdb; ipdb.set_trace()
                else:
                    _, loss_value, val_loss, summary_str, imgs, labs, predictions, logits = sess.run(
                        [
                            train_op, cost, val_cost, summary_op,
                            tf.reshape(train_images[0:3], [3, 224, 224, 3]),
                            tf.reshape(train_labels[0:3], [3, 112, 112]),
                            tf.reshape(model.prediction[0:3], [3, 112, 112]),
                            tf.reshape(model.logits[0:3], [3, 112, 112])
                        ])

            if step % 60 == 0:
                np.save('running_imgs', imgs)
                np.save('running_labs', labs)
                np.save('running_preds', predictions)
                np.save('running_logits', logits)

                summary_writer.add_summary(summary_str, step)

                duration = time.time() - start_time

                # Training status
                format_str = (
                    '%s: step %d, loss = %.2f, val loss = %.2f (%.1f examples/sec; '
                    '%.3f sec/batch) | logdir = %s\n')
                print(format_str % (datetime.now(), step, loss_value, val_loss,
                                    config.train_batch / duration,
                                    float(duration), config.summary_dir))

                if val_loss < best_val_loss:
                    saver.save(sess,
                               os.path.join(config.train_checkpoint,
                                            'model_' + str(step) + '.ckpt'),
                               global_step=step)

                if config.show_output:  # and step > 300 and step % 20 == 0:
                    num_columns = 6
                    num_imgs_plot = 3

                    for i in range(num_imgs_plot):

                        plt.subplot(num_imgs_plot, num_columns,
                                    i * num_columns + 1)
                        im = plt.imshow(imgs[i])
                        plt.colorbar(im)
                        plt.subplot(num_imgs_plot, num_columns,
                                    i * num_columns + 2)
                        lab = plt.imshow(labs[i])
                        plt.colorbar(lab)
                        plt.subplot(num_imgs_plot, num_columns,
                                    i * num_columns + 3)
                        logits_out = plt.imshow(logits[i])
                        plt.colorbar(logits_out)
                        plt.subplot(num_imgs_plot, num_columns,
                                    i * num_columns + 4)
                        cbl = plt.imshow(cb_logits[i])
                        plt.colorbar(cbl)
                        plt.subplot(num_imgs_plot, num_columns,
                                    i * num_columns + 5)
                        preds = plt.imshow(preds_presoft[i])
                        plt.colorbar(preds)
                        plt.subplot(num_imgs_plot, num_columns,
                                    i * num_columns + 6)
                        preds = plt.imshow(predictions[i])
                        plt.colorbar(preds)
                    plt.show()

            else:
                _, loss_value = sess.run([train_op, cost])

            # assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
            if np.isnan(loss_value):
                print 'yikes. nan loss -- check your cost function.'
                import pdb
                pdb.set_trace()

            # End iteration
            step += 1

    except tf.errors.OutOfRangeError:
        print('Done training for %d epochs, %d steps.' % (epoch_no, step))
    finally:
        coord.request_stop()
        np.save(os.path.join(config.tfrecord_dir, 'training_loss'), losses)
    coord.join(threads)
    sess.close()
Пример #15
0
def test_classifier(validation_pointer,
                    model_ckpt,
                    model_dir,
                    model_type,
                    model_weights,
                    selected_layer,
                    config,
                    simulate_subjects=121):

    # Make output directories if they do not exist
    config.checkpoint_directory = model_dir

    print '-' * 60
    print 'Testing the model over a %s. Saving to %s' % (model_type, model_dir)
    print '-' * 60

    dcn_flavor = import_cnn(model_type)

    # Prepare data on CPU
    with tf.device('/cpu:0'):
        val_images, val_labels, val_files = inputs(
            validation_pointer,
            config.validation_batch,
            config.validation_image_size,
            config.model_image_size[:2],
            1,
            shuffle_batch=False)

    # Prepare pretrained model on GPU
    with tf.device('/gpu:0'):
        with tf.variable_scope('cnn'):
            if 'ckpt' in model_weights:
                cnn = dcn_flavor.model()
            else:
                cnn = dcn_flavor.model(weight_path=model_weights)
            cnn.build(val_images)
            sample_layer = cnn[selected_layer]
            weights, yhat, classifier, class_loss = tf_loss.choose_classifier(
                sample_layer=sample_layer, y=val_labels, config=config)

    saver = tf.train.Saver(tf.all_variables(), max_to_keep=10)
    # Initialize the graph
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # Need to initialize both of these if supplying num_epochs to inputs
    sess.run(
        tf.group(tf.initialize_all_variables(),
                 tf.initialize_local_variables()))
    # Set up exemplar threading
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # Start training loop
    results = {'accs': [], 'preds': [], 'labs': [], 'files': []}
    # if int(tf.__version__.split('.')[1]) > 10:
    model_ckpt += '-%s' % re.search('\d+.ckpt',
                                    model_ckpt).group().split('.ckpt')[0]
    saver.restore(sess, model_ckpt)
    np_path = os.path.join(config.checkpoint_directory, 'validation_results')
    step = 0
    scores, labels = [], []
    try:
        print 'Testing model'
        while not coord.should_stop():
            start_time = time.time()
            pred, lab, f = sess.run([yhat, val_labels, val_files])
            pred = (pred > 0).astype(int).reshape(1, -1)
            acc = np.mean(pred == lab)
            scores += [pred]
            results['accs'] += [acc]
            results['preds'] += [pred]
            results['labs'] += [lab]
            results['files'] += [f]
            duration = time.time() - start_time
            print_status(step, 0, config, duration, acc, np_path)
            step += 1

    except tf.errors.OutOfRangeError:
        print 'Done testing.'
    finally:
        np.savez(np_path, **results)
        print 'Saved to: %s' % np_path
        coord.request_stop()
    coord.join(threads)
    sess.close()
    print '%.4f%% correct' % np.mean(results['accs'])

    if simulate_subjects:
        sim_subs = []
        print 'Simulating subjects'
        scores = np.concatenate(scores)
        labels = np.concatenate(results['labs'])
        for sub in tqdm(range(simulate_subjects)):
            it_results = {'accs': [], 'preds': [], 'labs': [], 'files': []}

            neuron_drop = np.random.rand(scores.shape[1]) > .95
            it_scores = np.copy(scores)
            it_scores[:, neuron_drop] = 0
            acc = np.mean(pred == labels)
            it_results['accs'] += [acc]
            it_results['preds'] += [pred]
            it_results['labs'] += [labels]
            it_results['files'] += [np.concatenate(results['files'])]
            sim_subs += [it_results]
        np.save(np_path + '_sim_subs', sim_subs)