Пример #1
0
def gen_detection_results(video_id, score_tp):
    if len(score_tp[0].shape) == 3:
        rel_prop = np.squeeze(score_tp[0], 0)
    else:
        rel_prop = score_tp[0]

    # standardize regression scores
    reg_scores = score_tp[3]
    if reg_scores is None:
        reg_scores = np.zeros((len(rel_prop), num_class, 2), dtype=np.float32)
    reg_scores = reg_scores.reshape((-1, num_class, 2))

    if top_k <= 0 and cls_score_dict is None:
        combined_scores = softmax(score_tp[1])[:, 1:] * np.exp(score_tp[2])
        for i in range(num_class):
            loc_scores = reg_scores[:, i, 0][:, None]
            dur_scores = reg_scores[:, i, 1][:, None]
            try:
                dataset_detections[i][video_id] = np.concatenate((
                    rel_prop, combined_scores[:, i][:, None], loc_scores, dur_scores), axis=1)
            except:
                print(i, rel_prop.shape, combined_scores.shape, reg_scores.shape)
                raise
    elif cls_score_dict is None:
        combined_scores = softmax(score_tp[1][:, 1:]) * np.exp(score_tp[2])
        keep_idx = np.argsort(combined_scores.ravel())[-top_k:]
        for k in keep_idx:
            cls = k % num_class
            prop_idx = k // num_class
            if video_id not in dataset_detections[cls]:
                dataset_detections[cls][video_id] = np.array([
                    [rel_prop[prop_idx, 0], rel_prop[prop_idx, 1], combined_scores[prop_idx, cls],
                     reg_scores[prop_idx, cls, 0], reg_scores[prop_idx, cls, 1]]
                ])
            else:
                dataset_detections[cls][video_id] = np.vstack(
                    [dataset_detections[cls][video_id],
                     [rel_prop[prop_idx, 0], rel_prop[prop_idx, 1], combined_scores[prop_idx, cls],
                     reg_scores[prop_idx, cls, 0], reg_scores[prop_idx, cls, 1]]])
    else:
        if softmax_bf:
            combined_scores = softmax(score_tp[1])[:, 1:] * np.exp(score_tp[2])
        else:
            combined_scores = score_tp[1][:, 1:] * np.exp(score_tp[2])
        video_cls_score = cls_score_dict[os.path.splitext(os.path.basename(video_id))[0]]

        for video_cls in np.argsort(video_cls_score,)[-args.cls_top_k:]:
            loc_scores = reg_scores[:, video_cls, 0][:, None]
            dur_scores = reg_scores[:, video_cls, 1][:, None]
            try:
                dataset_detections[video_cls][video_id] = np.concatenate((
                    rel_prop, combined_scores[:, video_cls][:, None], loc_scores, dur_scores), axis=1)
            except:
                print(video_cls, rel_prop.shape, combined_scores.shape, reg_scores.shape, loc_scores.shape, dur_scores.shape)
                raise
def gen_detection_results(video_id, score_tp):
    if len(score_tp[0].shape) == 3:
        rel_prop = np.squeeze(score_tp[0], 0)
    else:
        rel_prop = score_tp[0]

    # standardize regression scores
    reg_scores = score_tp[3]
    if reg_scores is None:
        reg_scores = np.zeros((len(rel_prop), num_class, 2), dtype=np.float32)
    reg_scores = reg_scores.reshape((-1, num_class, 2))

    if top_k <= 0 and cls_score_dict is None:
        combined_scores = softmax(score_tp[1])[:, 1:] * np.exp(score_tp[2])
        for i in range(num_class):
            loc_scores = reg_scores[:, i, 0][:, None]
            dur_scores = reg_scores[:, i, 1][:, None]
            try:
                dataset_detections[i][video_id] = np.concatenate((
                    rel_prop, combined_scores[:, i][:, None], loc_scores, dur_scores), axis=1)
            except:
                print(i, rel_prop.shape, combined_scores.shape, reg_scores.shape)
                raise
    elif cls_score_dict is None:
        combined_scores = softmax(score_tp[1][:, 1:]) * np.exp(score_tp[2])
        keep_idx = np.argsort(combined_scores.ravel())[-top_k:]
        for k in keep_idx:
            cls = k % num_class
            prop_idx = k // num_class
            if video_id not in dataset_detections[cls]:
                dataset_detections[cls][video_id] = np.array([
                    [rel_prop[prop_idx, 0], rel_prop[prop_idx, 1], combined_scores[prop_idx, cls],
                     reg_scores[prop_idx, cls, 0], reg_scores[prop_idx, cls, 1]]
                ])
            else:
                dataset_detections[cls][video_id] = np.vstack(
                    [dataset_detections[cls][video_id],
                     [rel_prop[prop_idx, 0], rel_prop[prop_idx, 1], combined_scores[prop_idx, cls],
                     reg_scores[prop_idx, cls, 0], reg_scores[prop_idx, cls, 1]]])
    else:
        if softmax_bf:
            combined_scores = softmax(score_tp[1])[:, 1:] * np.exp(score_tp[2])
        else:
            combined_scores = score_tp[1][:, 1:] * np.exp(score_tp[2])
        video_cls_score = cls_score_dict[os.path.splitext(os.path.basename(video_id))[0]]

        for video_cls in np.argsort(video_cls_score,)[-args.cls_top_k:]:
            loc_scores = reg_scores[:, video_cls, 0][:, None]
            dur_scores = reg_scores[:, video_cls, 1][:, None]
            try:
                dataset_detections[video_cls][video_id] = np.concatenate((
                    rel_prop, combined_scores[:, video_cls][:, None], loc_scores, dur_scores), axis=1)
            except:
                print(video_cls, rel_prop.shape, combined_scores.shape, reg_scores.shape, loc_scores.shape, dur_scores.shape)
                raise
Пример #3
0
def gen_detection_results(video_id, score_tp):
    if len(score_tp[0].shape) == 3:
        rel_prop = np.squeeze(score_tp[0], 0)
    else:
        rel_prop = score_tp[0]

    # standardize regression scores
    reg_scores = score_tp[3]
    if reg_scores is None:
        reg_scores = np.zeros((len(rel_prop), num_class, 2), dtype=np.float32)
    reg_scores = reg_scores.reshape((-1, num_class, 2))

    combined_scores = softmax(score_tp[1].squeeze()[:, :])
    combined_scores = combined_scores[:, 1:]
    combined_scores = combined_scores * np.exp(score_tp[2].squeeze())
    keep_idx = np.argsort(combined_scores.ravel())[-top_k:]
    for k in keep_idx:
        cls = k % num_class
        prop_idx = k // num_class
        if video_id not in dataset_detections[cls]:
            dataset_detections[cls][video_id] = np.array([[
                rel_prop[prop_idx, 0], rel_prop[prop_idx, 1],
                combined_scores[prop_idx, cls], reg_scores[prop_idx, cls, 0],
                reg_scores[prop_idx, cls, 1]
            ]])
        else:
            dataset_detections[cls][video_id] = np.vstack([
                dataset_detections[cls][video_id],
                [
                    rel_prop[prop_idx, 0], rel_prop[prop_idx, 1],
                    combined_scores[prop_idx, cls],
                    reg_scores[prop_idx, cls, 0], reg_scores[prop_idx, cls, 1]
                ]
            ])
Пример #4
0
def gen_detection_results(video_id, score_tp):
    if len(score_tp[0].shape) == 3:
        rel_prop = np.squeeze(score_tp[0], 0)
    else:
        rel_prop = score_tp[0]

    # standardize regression scores
    reg_scores = score_tp[3]
    if reg_scores is None:
        reg_scores = np.zeros((len(rel_prop), num_class, 2), dtype=np.float32)
    reg_scores = reg_scores.reshape((-1, num_class, 2))

    if cls_score_dict is None:
        combined_scores = softmax(score_tp[1][:, :])
        combined_scores = combined_scores[:, 1:]
    else:
        combined_scores = softmax(cls_score_dict[video_id][1])[:, 1:]
        if combined_scores.shape[1] < score_tp[2].shape[1]:
            combined_scores = np.concatenate(
                (combined_scores,
                 np.zeros([
                     len(combined_scores),
                     score_tp[2].shape[1] - combined_scores.shape[1]
                 ])),
                axis=1)
        elif combined_scores.shape[1] > score_tp[2].shape[1]:
            combined_scores = combined_scores[:, :score_tp[2].shape[1]]
    if not args.no_comp:
        combined_scores = combined_scores * np.exp(score_tp[2])
    keep_idx = np.argsort(combined_scores.ravel())[-top_k:]

    # pdb.set_trace()
    delete_short = args.min_length is not None
    if delete_short:
        print('delete short proposals')
        duration = dataset.video_dict[video_id].num_frames / 6
        prop_duration = duration * (rel_prop[:, 1] - rel_prop[:, 0])
        non_short_prop_idx = np.where(prop_duration <= args.min_length)[0]
        keep_idx = [
            x for x in keep_idx if x // num_class in non_short_prop_idx
        ]

    # keep_prop_num = len({x//num_class for x in keep_idx})

    for k in keep_idx:
        cls = k % num_class
        prop_idx = k // num_class
        if video_id not in dataset_detections[cls]:
            dataset_detections[cls][video_id] = np.array([[
                rel_prop[prop_idx, 0], rel_prop[prop_idx, 1],
                combined_scores[prop_idx, cls], reg_scores[prop_idx, cls, 0],
                reg_scores[prop_idx, cls, 1]
            ]])
        else:
            dataset_detections[cls][video_id] = np.vstack([
                dataset_detections[cls][video_id],
                [
                    rel_prop[prop_idx, 0], rel_prop[prop_idx, 1],
                    combined_scores[prop_idx, cls],
                    reg_scores[prop_idx, cls, 0], reg_scores[prop_idx, cls, 1]
                ]
            ])

    return len(keep_idx)