def build_network(self, x):
     # Building network...
     with tf.variable_scope('LeNet'):
         x = conv_2d(x,
                     filter_size=5,
                     num_filters=6,
                     name='conv_1',
                     keep_prob=1)
         x = drop_out(x, self.keep_prob_pl)
         x = max_pool(x, 2, 2, 'pool_1')
         x = conv_2d(x,
                     filter_size=5,
                     num_filters=16,
                     name='conv_2',
                     keep_prob=1)
         x = drop_out(x, self.keep_prob_pl)
         x = max_pool(x, 2, 2, 'pool_2')
         x = flatten_layer(x)
         x = drop_out(x, self.keep_prob_pl)
         x = fc_layer(x, 120, name='fc_1', keep_prob=1)
         x = drop_out(x, self.keep_prob_pl)
         x = fc_layer(x, 84, name='fc_2', keep_prob=1)
         x = drop_out(x, self.keep_prob_pl)
         self.logits = fc_layer(x,
                                self.conf.num_cls,
                                name='fc_3',
                                use_relu=False,
                                keep_prob=1)
Пример #2
0
    def build_network(self, x):
        # Building network...
        with tf.variable_scope('FCNet'):
            x = conv_2d(x,
                        filter_size=3,
                        stride=1,
                        num_filters=32,
                        name='conv_1',
                        keep_prob=1)
            x = tf.contrib.slim.batch_norm(x)
            x = conv_2d(x,
                        filter_size=3,
                        stride=1,
                        num_filters=32,
                        name='conv_2',
                        keep_prob=1)
            x = tf.contrib.slim.batch_norm(x)
            x = max_pool(x, 2, 2, 'pool_1')

            x = conv_2d(x,
                        filter_size=3,
                        stride=1,
                        num_filters=64,
                        name='conv_3',
                        keep_prob=1)
            x = tf.contrib.slim.batch_norm(x)
            x = conv_2d(x,
                        filter_size=3,
                        stride=1,
                        num_filters=64,
                        name='conv_4',
                        keep_prob=1)
            x = tf.contrib.slim.batch_norm(x)
            x = max_pool(x, 2, 2, 'pool_2')

            x = conv_2d(x,
                        filter_size=3,
                        stride=1,
                        num_filters=128,
                        name='conv_5',
                        keep_prob=1)
            x = tf.contrib.slim.batch_norm(x)
            x = conv_2d(x,
                        filter_size=3,
                        stride=1,
                        num_filters=128,
                        name='conv_6',
                        keep_prob=1)
            x = tf.contrib.slim.batch_norm(x)
            x = max_pool(x, 2, 2, 'pool_3')

            x = flatten_layer(x)
            self.logits = fc_layer(x,
                                   self.conf.num_cls,
                                   name='fc_3',
                                   use_relu=False,
                                   keep_prob=1)
def AlexNet(X, keep_prob, is_train):
    net = conv_2d(X, 7, 2, 96, 'CONV1', trainable=True)
    net = lrn(net)
    net = max_pool(net, 3, 2, 'MaxPool1')
    net = conv_2d(net, 5, 2, 256, 'CONV2', trainable=True)
    net = lrn(net)
    net = max_pool(net, 3, 2, 'MaxPool2')
    net = conv_2d(net, 3, 1, 384, 'CONV3', trainable=True)
    net = conv_2d(net, 3, 1, 384, 'CONV4', trainable=True)
    net = conv_2d(net, 3, 1, 256, 'CONV5', trainable=True)
    net = max_pool(net, 3, 2, 'MaxPool3')
    layer_flat = flatten_layer(net)
    net = fc_layer(layer_flat, 512, 'FC1', trainable=True, use_relu=True)
    net = dropout(net, keep_prob)
    return net
def AlexNet_target_task(X, keep_prob, num_cls):
    net = conv_2d(X, 7, 2, 96, 'CONV1', trainable=False)
    net = lrn(net)
    net = max_pool(net, 3, 2, 'MaxPool1')
    net = conv_2d(net, 5, 2, 256, 'CONV2', trainable=False)
    net = lrn(net)
    net = max_pool(net, 3, 2, 'MaxPool2')
    net = conv_2d(net, 3, 1, 384, 'CONV3', trainable=False)
    net = conv_2d(net, 3, 1, 384, 'CONV4', trainable=False)
    net = conv_2d(net, 3, 1, 256, 'CONV5', trainable=False)
    net = max_pool(net, 3, 2, 'MaxPool3')
    layer_flat = flatten_layer(net)
    net = fc_layer(layer_flat, 512, 'FC_1', trainable=True, use_relu=True)
    net = dropout(net, keep_prob)
    net = fc_layer(net, num_cls, 'FC_2', trainable=True, use_relu=False)
    return net
def create_network(X, h, keep_prob, numClasses):
    num_channels = X.get_shape().as_list()[-1]
    res1 = new_conv_layer(inputs=X,
                          layer_name='res1',
                          stride=2,
                          num_inChannel=num_channels,
                          filter_size=4,
                          num_filters=32,
                          batch_norm=True,
                          use_relu=True)

    #res1 = max_pool(res1, ksize=2, stride=2, name='res1_max_pool')
    print('---------------------')
    print('Res1')
    print(res1.get_shape())
    print('---------------------')
    # Res2
    with tf.variable_scope('Res2'):
        res2a = bottleneck_block(res1,
                                 32,
                                 block_name='res2a',
                                 s1=1,
                                 k1=1,
                                 nf1=32,
                                 name1='res2a_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=32,
                                 name2='res2a_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=64,
                                 name3='res2a_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res2a_branch1',
                                 first_block=True)
        print('Res2a')
        print(res2a.get_shape())
        print('---------------------')
        res2b = bottleneck_block(res2a,
                                 64,
                                 block_name='res2b',
                                 s1=1,
                                 k1=1,
                                 nf1=32,
                                 name1='res2b_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=32,
                                 name2='res2b_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=64,
                                 name3='res2b_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res2b_branch1',
                                 first_block=False)
        print('Res2b')
        print(res2b.get_shape())
        print('---------------------')
        res2c = bottleneck_block(res2b,
                                 64,
                                 block_name='res2c',
                                 s1=1,
                                 k1=1,
                                 nf1=32,
                                 name1='res2c_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=32,
                                 name2='res2c_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=64,
                                 name3='res2c_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res2c_branch1',
                                 first_block=False)
        print('Res2c')
        print(res2c.get_shape())
        print('---------------------')

    # Res3
    with tf.variable_scope('Res3'):
        res3a = bottleneck_block(res2c,
                                 64,
                                 block_name='res3a',
                                 s1=2,
                                 k1=1,
                                 nf1=48,
                                 name1='res3a_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=48,
                                 name2='res3a_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=128,
                                 name3='res3a_branch2c',
                                 s4=2,
                                 k4=1,
                                 name4='res3a_branch1',
                                 first_block=True)
        print('Res3a')
        print(res3a.get_shape())
        print('---------------------')
        res3b = bottleneck_block(res3a,
                                 128,
                                 block_name='res3b',
                                 s1=1,
                                 k1=1,
                                 nf1=48,
                                 name1='res3b_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=48,
                                 name2='res3b_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=128,
                                 name3='res3b_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res2b_branch1',
                                 first_block=False)
        print('Res3b')
        print(res3b.get_shape())
        print('---------------------')
        res3c = bottleneck_block(res3b,
                                 128,
                                 block_name='res3c',
                                 s1=1,
                                 k1=1,
                                 nf1=48,
                                 name1='res3c_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=48,
                                 name2='res3c_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=128,
                                 name3='res3c_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res3c_branch1',
                                 first_block=False)
        print('Res3c')
        print(res3c.get_shape())
        print('---------------------')
        res3d = bottleneck_block(res3c,
                                 128,
                                 block_name='res3d',
                                 s1=1,
                                 k1=1,
                                 nf1=48,
                                 name1='res3d_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=48,
                                 name2='res3d_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=128,
                                 name3='res3d_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res3d_branch1',
                                 first_block=False)
        print('Res3d')
        print(res3d.get_shape())
        print('---------------------')

    # Res4
    with tf.variable_scope('Res4'):
        res4a = bottleneck_block(res3d,
                                 128,
                                 block_name='res4a',
                                 s1=2,
                                 k1=1,
                                 nf1=64,
                                 name1='res4a_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=64,
                                 name2='res4a_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=256,
                                 name3='res4a_branch2c',
                                 s4=2,
                                 k4=1,
                                 name4='res4a_branch1',
                                 first_block=True)
        print('---------------------')
        print('Res4a')
        print(res4a.get_shape())
        print('---------------------')
        res4b = bottleneck_block(res4a,
                                 256,
                                 block_name='res4b',
                                 s1=1,
                                 k1=1,
                                 nf1=64,
                                 name1='res4b_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=64,
                                 name2='res4b_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=256,
                                 name3='res4b_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res4b_branch1',
                                 first_block=False)
        print('Res4b')
        print(res4b.get_shape())
        print('---------------------')
        res4c = bottleneck_block(res4b,
                                 256,
                                 block_name='res4c',
                                 s1=1,
                                 k1=1,
                                 nf1=64,
                                 name1='res4c_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=64,
                                 name2='res4c_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=256,
                                 name3='res4c_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res4c_branch1',
                                 first_block=False)
        print('Res4c')
        print(res4c.get_shape())
        print('---------------------')
        res4d = bottleneck_block(res4c,
                                 256,
                                 block_name='res4d',
                                 s1=1,
                                 k1=1,
                                 nf1=64,
                                 name1='res4d_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=64,
                                 name2='res4d_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=256,
                                 name3='res4d_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res4d_branch1',
                                 first_block=False)
        print('Res4d')
        print(res4d.get_shape())
        print('---------------------')
        res4e = bottleneck_block(res4d,
                                 256,
                                 block_name='res4e',
                                 s1=1,
                                 k1=1,
                                 nf1=64,
                                 name1='res4e_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=64,
                                 name2='res4e_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=256,
                                 name3='res4e_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res4e_branch1',
                                 first_block=False)
        print('Res4e')
        print(res4e.get_shape())
        print('---------------------')
        res4f = bottleneck_block(res4e,
                                 256,
                                 block_name='res4f',
                                 s1=1,
                                 k1=1,
                                 nf1=64,
                                 name1='res4f_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=64,
                                 name2='res4f_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=256,
                                 name3='res4f_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res4f_branch1',
                                 first_block=False)
        print('Res4f')
        print(res4f.get_shape())
        print('---------------------')

    # Res5
    with tf.variable_scope('Res5'):
        res5a = bottleneck_block(res4f,
                                 256,
                                 block_name='res5a',
                                 s1=1,
                                 k1=1,
                                 nf1=128,
                                 name1='res5a_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=128,
                                 name2='res5a_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=512,
                                 name3='res5a_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res5a_branch1',
                                 first_block=True)
        print('---------------------')
        print('Res5a')
        print(res5a.get_shape())
        print('---------------------')
        res5b = bottleneck_block(res5a,
                                 512,
                                 block_name='res5b',
                                 s1=1,
                                 k1=1,
                                 nf1=128,
                                 name1='res5b_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=128,
                                 name2='res5b_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=512,
                                 name3='res5b_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res5b_branch1',
                                 first_block=False)
        print('Res5b')
        print(res5b.get_shape())
        print('---------------------')
        res5c = bottleneck_block(res5b,
                                 512,
                                 block_name='res5c',
                                 s1=1,
                                 k1=1,
                                 nf1=128,
                                 name1='res5c_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=128,
                                 name2='res5c_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=512,
                                 name3='res5c_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res5c_branch1',
                                 first_block=False)
        print('Res5c')
        print(res5c.get_shape())

        res5c = avg_pool(res5c, ksize=4, stride=1, name='res5_avg_pool')
        print('---------------------')
        print('Res5c after AVG_POOL')
        print(res5c.get_shape())
        print('---------------------')

    net_flatten, _ = flatten_layer(res5c)
    print('---------------------')
    print('Matrix dimension to the first FC layer')
    print(net_flatten.get_shape())
    print('---------------------')
    net = fc_layer(net_flatten,
                   h,
                   'FC1',
                   batch_norm=True,
                   add_reg=True,
                   use_relu=True)
    net = dropout(net, keep_prob)
    net = fc_layer(net,
                   numClasses,
                   'FC2',
                   batch_norm=True,
                   add_reg=True,
                   use_relu=False)

    return net
Пример #6
0
def create_network(X, numClasses, is_train):
    """
    Building the Residual Network with 50 layer
    :param X: input
    :param h: number of units in the fully connected layer
    :param keep_prob: dropout rate
    :param numClasses: number of classes
    :param is_train: to be used by batch normalization
    :return:
    """
    res1 = conv_2d(X,
                   layer_name='res1',
                   stride=2,
                   filter_size=7,
                   num_filters=64,
                   is_train=is_train,
                   batch_norm=True,
                   use_relu=True)
    print('---------------------')
    print('Res1')
    print(res1.get_shape())
    print('---------------------')
    res1 = max_pool(res1, ksize=3, stride=2, name='res1_max_pool')
    print('---------------------')
    print('Res1')
    print(res1.get_shape())
    print('---------------------')
    # Res2
    with tf.variable_scope('Res2'):
        res2a = bottleneck_block(res1,
                                 is_train,
                                 block_name='res2a',
                                 s1=1,
                                 k1=1,
                                 nf1=64,
                                 name1='res2a_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=64,
                                 name2='res2a_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=256,
                                 name3='res2a_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res2a_branch1',
                                 first_block=True)
        print('Res2a')
        print(res2a.get_shape())
        print('---------------------')
        res2b = bottleneck_block(res2a,
                                 is_train,
                                 block_name='res2b',
                                 s1=1,
                                 k1=1,
                                 nf1=64,
                                 name1='res2b_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=64,
                                 name2='res2b_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=256,
                                 name3='res2b_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res2b_branch1',
                                 first_block=False)
        print('Res2b')
        print(res2b.get_shape())
        print('---------------------')
        res2c = bottleneck_block(res2b,
                                 is_train,
                                 block_name='res2c',
                                 s1=1,
                                 k1=1,
                                 nf1=64,
                                 name1='res2c_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=64,
                                 name2='res2c_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=256,
                                 name3='res2c_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res2c_branch1',
                                 first_block=False)
        print('Res2c')
        print(res2c.get_shape())
        print('---------------------')

    # Res3
    with tf.variable_scope('Res3'):
        res3a = bottleneck_block(res2c,
                                 is_train,
                                 block_name='res3a',
                                 s1=2,
                                 k1=1,
                                 nf1=128,
                                 name1='res3a_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=128,
                                 name2='res3a_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=512,
                                 name3='res3a_branch2c',
                                 s4=2,
                                 k4=1,
                                 name4='res3a_branch1',
                                 first_block=True)
        print('Res3a')
        print(res3a.get_shape())
        print('---------------------')
        res3b = bottleneck_block(res3a,
                                 is_train,
                                 block_name='res3b',
                                 s1=1,
                                 k1=1,
                                 nf1=128,
                                 name1='res3b_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=128,
                                 name2='res3b_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=512,
                                 name3='res3b_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res2b_branch1',
                                 first_block=False)
        print('Res3b')
        print(res3b.get_shape())
        print('---------------------')
        res3c = bottleneck_block(res3b,
                                 is_train,
                                 block_name='res3c',
                                 s1=1,
                                 k1=1,
                                 nf1=128,
                                 name1='res3c_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=128,
                                 name2='res3c_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=512,
                                 name3='res3c_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res3c_branch1',
                                 first_block=False)
        print('Res3c')
        print(res3c.get_shape())
        print('---------------------')
        res3d = bottleneck_block(res3c,
                                 is_train,
                                 block_name='res3d',
                                 s1=1,
                                 k1=1,
                                 nf1=128,
                                 name1='res3d_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=128,
                                 name2='res3d_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=512,
                                 name3='res3d_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res3d_branch1',
                                 first_block=False)
        print('Res3d')
        print(res3d.get_shape())
        print('---------------------')

    # Res4
    with tf.variable_scope('Res4'):
        res4a = bottleneck_block(res3d,
                                 is_train,
                                 block_name='res4a',
                                 s1=2,
                                 k1=1,
                                 nf1=256,
                                 name1='res4a_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=256,
                                 name2='res4a_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=1024,
                                 name3='res4a_branch2c',
                                 s4=2,
                                 k4=1,
                                 name4='res4a_branch1',
                                 first_block=True)
        print('---------------------')
        print('Res4a')
        print(res4a.get_shape())
        print('---------------------')
        res4b = bottleneck_block(res4a,
                                 is_train,
                                 block_name='res4b',
                                 s1=1,
                                 k1=1,
                                 nf1=256,
                                 name1='res4b_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=256,
                                 name2='res4b_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=1024,
                                 name3='res4b_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res4b_branch1',
                                 first_block=False)
        print('Res4b')
        print(res4b.get_shape())
        print('---------------------')
        res4c = bottleneck_block(res4b,
                                 is_train,
                                 block_name='res4c',
                                 s1=1,
                                 k1=1,
                                 nf1=256,
                                 name1='res4c_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=256,
                                 name2='res4c_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=1024,
                                 name3='res4c_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res4c_branch1',
                                 first_block=False)
        print('Res4c')
        print(res4c.get_shape())
        print('---------------------')
        res4d = bottleneck_block(res4c,
                                 is_train,
                                 block_name='res4d',
                                 s1=1,
                                 k1=1,
                                 nf1=256,
                                 name1='res4d_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=256,
                                 name2='res4d_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=1024,
                                 name3='res4d_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res4d_branch1',
                                 first_block=False)
        print('Res4d')
        print(res4d.get_shape())
        print('---------------------')
        res4e = bottleneck_block(res4d,
                                 is_train,
                                 block_name='res4e',
                                 s1=1,
                                 k1=1,
                                 nf1=256,
                                 name1='res4e_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=256,
                                 name2='res4e_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=1024,
                                 name3='res4e_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res4e_branch1',
                                 first_block=False)
        print('Res4e')
        print(res4e.get_shape())
        print('---------------------')
        res4f = bottleneck_block(res4e,
                                 is_train,
                                 block_name='res4f',
                                 s1=1,
                                 k1=1,
                                 nf1=256,
                                 name1='res4f_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=256,
                                 name2='res4f_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=1024,
                                 name3='res4f_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res4f_branch1',
                                 first_block=False)
        print('Res4f')
        print(res4f.get_shape())
        print('---------------------')

    # Res5
    with tf.variable_scope('Res5'):
        res5a = bottleneck_block(res4f,
                                 is_train,
                                 block_name='res5a',
                                 s1=2,
                                 k1=1,
                                 nf1=512,
                                 name1='res5a_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=512,
                                 name2='res5a_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=2048,
                                 name3='res5a_branch2c',
                                 s4=2,
                                 k4=1,
                                 name4='res5a_branch1',
                                 first_block=True)
        print('---------------------')
        print('Res5a')
        print(res5a.get_shape())
        print('---------------------')
        res5b = bottleneck_block(res5a,
                                 is_train,
                                 block_name='res5b',
                                 s1=1,
                                 k1=1,
                                 nf1=512,
                                 name1='res5b_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=512,
                                 name2='res5b_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=2048,
                                 name3='res5b_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res5b_branch1',
                                 first_block=False)
        print('Res5b')
        print(res5b.get_shape())
        print('---------------------')
        res5c = bottleneck_block(res5b,
                                 is_train,
                                 block_name='res5c',
                                 s1=1,
                                 k1=1,
                                 nf1=512,
                                 name1='res5c_branch2a',
                                 s2=1,
                                 k2=3,
                                 nf2=512,
                                 name2='res5c_branch2b',
                                 s3=1,
                                 k3=1,
                                 nf3=2048,
                                 name3='res5c_branch2c',
                                 s4=1,
                                 k4=1,
                                 name4='res5c_branch1',
                                 first_block=False)
        # res5c: [batch_size, 8, 8, 2048]
        print('Res5c')
        print(res5c.get_shape())
        k_size = res5c.get_shape().as_list()[1]
        num_filters = res5c.get_shape().as_list()[-1]

        f_map = tf.reshape(res5c, [-1, k_size * k_size, num_filters],
                           name='reshape_fmaps')
        # [batch_size, 64, 2048]

        res5c_gap = avg_pool(res5c,
                             ksize=k_size,
                             stride=1,
                             name='res5_avg_pool')
        # [batch_size, 1, 1, 2048]
        print('---------------------')
        print('Res5c after AVG_POOL')
        print(res5c.get_shape())
        print('---------------------')

    net_flatten = flatten_layer(res5c_gap)
    # [batch_size, 2048]
    print('---------------------')
    print('Matrix dimension to the first FC layer')
    print(net_flatten.get_shape())
    print('---------------------')
    net, W = fc_layer(net_flatten,
                      numClasses,
                      'FC1',
                      is_train=is_train,
                      batch_norm=True,
                      add_reg=True,
                      use_relu=False)
    # W: [2048, 14]
    W_tiled = tf.tile(tf.expand_dims(W, axis=0), [args.val_batch_size, 1, 1])

    # [2048, 14] -> [1, 2048, 14] -> [batch_size, 2048, 14]

    heat_map_list = tf.unstack(tf.matmul(f_map, W_tiled), axis=0)
    # [batch_size, 64, 14]
    # list of heat-maps of length batch_size, each element: [64, 14]

    cls_act_map_list = [
        tf.nn.softmax(heat_map, dim=0) for heat_map in heat_map_list
    ]
    cls_act_map = tf.stack(cls_act_map_list, axis=0)
    # [batch_size, 64, 14]

    return net, net_flatten, res5c, cls_act_map