def test_le_cnt_with_opt(): prob = OptProb() model = prob.get_model() param = TestParam("test", 3, 1) param.resample() var = Variable(model, param) prob.add_var(var) twoe1 = AffExpr(constant=np.array([[2], [0], [-1]], dtype=np.float)) # var = Variable(model, param) lhs = AffExpr({param: 1}) fluent = LinLEFluent('test_eq', 0, lhs, twoe1) variables = [var] param_to_var = {param: var} constraints = Constraints(model) if isinstance(fluent, LinLEFluent): lhs = to_gurobi_expr(fluent.lhs, param_to_var) rhs = to_gurobi_expr(fluent.rhs, param_to_var) model.update() constraints.add_leq_cntr(lhs, rhs) assert not fluent.satisfied() prob.add_constraints(constraints) obj = grb.QuadExpr() for var in variables: for i in range(var.rows): for j in range(var.cols): v = var.grb_vars[i, j] obj += v*v - 2*v + 1 prob.obj_sqp = obj prob.optimize() var.update_hl_param() assert fluent.satisfied() assert np.all(variables[0].get_val() == np.array([[1], [0], [-1]]))
def test_eq_cnt_with_gurobi(): model = grb.Model() obj = grb.QuadExpr() param = TestParam("test", 3, 1) param.resample() var = Variable(model, param) zero = AffExpr(constant=np.array([[0], [0], [0]], dtype=np.float)) # var = Variable(model, param) lhs = AffExpr({param: 1}) fluent = LinEqFluent('test_eq', 0, lhs, zero) variables = [Variable(model, param)] param_to_var = {param: variables[0]} constraints = Constraints(model) if isinstance(fluent, LinEqFluent): lhs = to_gurobi_expr(fluent.lhs, param_to_var) rhs = to_gurobi_expr(fluent.rhs, param_to_var) model.update() constraints.add_eq_cntr(lhs, rhs) assert not fluent.satisfied() for var in variables: for i in range(var.rows): for j in range(var.cols): v = var.grb_vars[i, j] obj += v*v - 2*v + 1 model.setObjective(obj) model.update() model.optimize() var.update() var.update_hl_param() assert fluent.satisfied()