Пример #1
0
def RHC():
    correctCount = 0
    RHC_iters = 10
    t=0
    totalTime =0
    totalIters = 0

    global rhc
    rhc = RandomizedHillClimbing(hcp)
    while correctCount < NUM_RIGHT:
        # print str(correctCount)+  " / 20 correct in RHC w/ iters " + str(RHC_iters)
        fit = FixedIterationTrainer(rhc, RHC_iters)
        start = time.time()
        fitness = fit.train()
        t = time.time() - start
        totalIters+=RHC_iters
        totalTime += t;
        myWriter.addValue(fitness, "RHC_fitness", runNum)
        myWriter.addValue(t, "RHC_searchTimes",runNum)
        v = ef.value(rhc.getOptimal())
        if v == N:
            correctCount += 1
        else:
            correctCount = 0
            #RHC_iters += 1
    myWriter.addValue(totalTime,"RHC_times",runNum)
    myWriter.addValue(totalIters,"RHC_iters",runNum)
    print str(N) + ": RHC: " + str(ef.value(rhc.getOptimal()))+" took "+str(totalTime)+" seconds and " + str(totalIters) + " iterations"
Пример #2
0
def RHC():
    correctCount = 0
    RHC_iters = 10
    t = 0
    totalTime = 0
    totalIters = 0

    global rhc
    rhc = RandomizedHillClimbing(hcp)
    while correctCount < NUM_RIGHT:
        # print str(correctCount)+  " / 20 correct in RHC w/ iters " + str(RHC_iters)
        fit = FixedIterationTrainer(rhc, RHC_iters)
        start = time.time()
        fitness = fit.train()
        t = time.time() - start
        totalIters += RHC_iters
        totalTime += t
        myWriter.addValue(fitness, "RHC_fitness", runNum)
        myWriter.addValue(t, "RHC_searchTimes", runNum)
        v = ef.value(rhc.getOptimal())
        if v == N:
            correctCount += 1
        else:
            correctCount = 0
            #RHC_iters += 1
    myWriter.addValue(totalTime, "RHC_times", runNum)
    myWriter.addValue(totalIters, "RHC_iters", runNum)
    print str(N) + ": RHC: " + str(ef.value(
        rhc.getOptimal())) + " took " + str(totalTime) + " seconds and " + str(
            totalIters) + " iterations"
Пример #3
0
def run_rhc(t):
    fname = outfile.format('RHC', str(t + 1))
    with open(fname, 'a+') as f:
        content = f.read()
        if "fitness" not in content:
            f.write('iterations,fitness,time,fevals\n')
    ef = FlipFlopEvaluationFunction()
    odd = DiscreteUniformDistribution(ranges)
    nf = DiscreteChangeOneNeighbor(ranges)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    rhc = RandomizedHillClimbing(hcp)
    fit = FixedIterationTrainer(rhc, 10)
    times = [0]
    for i in range(0, maxIters, 10):
        start = clock()
        fit.train()
        elapsed = time.clock() - start
        times.append(times[-1] + elapsed)
        fevals = ef.fevals
        score = ef.value(rhc.getOptimal())
        ef.fevals -= 1
        st = '{},{},{},{}\n'.format(i, score, times[-1], fevals)
        # print st
        base.write_to_file(fname, st)
    return
Пример #4
0
def solveit(oaname, params):
    N = 60
    T = N / 10
    fill = [2] * N
    ranges = array('i', fill)
    iterations = 10000
    tryi = 1

    ef = ContinuousPeaksEvaluationFunction(T)
    odd = DiscreteUniformDistribution(ranges)
    nf = DiscreteChangeOneNeighbor(ranges)
    mf = DiscreteChangeOneMutation(ranges)
    cf = SingleCrossOver()
    df = DiscreteDependencyTree(.1, ranges)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
    pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

    #  fit = FixedIterationTrainer(rhc, 200000)
    #  fit.train()

    if oaname == 'RHC':
        iterations = int(params[0])
        tryi = int(params[1])
        oa = RandomizedHillClimbing(hcp)
    if oaname == 'SA':
        oa = SimulatedAnnealing(float(params[0]), float(params[1]), hcp)
    if oaname == 'GA':
        oa = StandardGeneticAlgorithm(int(params[0]), int(params[1]),
                                      int(params[2]), gap)
    if oaname == 'MMC':
        oa = MIMIC(int(params[0]), int(params[1]), pop)

    print "Running %s using %s for %d iterations, try %d" % (
        oaname, ','.join(params), iterations, tryi)
    print "=" * 20
    starttime = timeit.default_timer()
    output = []
    for i in range(iterations):
        oa.train()
        if i % 10 == 0:
            optimal = oa.getOptimal()
            score = ef.value(optimal)
            elapsed = float(timeit.default_timer() - starttime)
            output.append([str(i), str(score), str(elapsed)])

    print 'score: %.3f' % score
    print 'train time: %.3f secs' % (int(timeit.default_timer() - starttime))

    scsv = 'cp-%s-%s.csv' % (oaname, '-'.join(params))
    print "Saving to %s" % (scsv),
    with open(scsv, 'w') as csvf:
        writer = csv.writer(csvf)
        for row in output:
            writer.writerow(row)
    print "saved."
    print "=" * 20
Пример #5
0
def run_rhc(hcp, ef, iterations=200000):

    rhc = RandomizedHillClimbing(hcp)
    fit = FixedIterationTrainer(rhc, iterations)
    fit.train()

    optimal_result = str(ef.value(rhc.getOptimal()))
    print "RHC: " + optimal_result

    return optimal_result, iterations
Пример #6
0
    def run_experiment(self, opName='TSP'):
        """Run a randomized hill climbing optimization experiment for a given
        optimization problem.

        Args:
            ef (AbstractEvaluationFunction): Evaluation function.
            ranges (array): Search space ranges.
            op (str): Name of optimization problem.

        """
        outdir = 'results/OPT/{}'.format(opName)  # get results directory
        fname = get_abspath('RHC_results.csv', outdir)  # get output filename

        # delete existing results file, if it already exists
        try:
            os.remove(fname)
        except Exception as e:
            print e
            pass

        with open(fname, 'w') as f:
            f.write('iterations,fitness,time,fevals,trial\n')

        # start experiment
        for t in range(self.numTrials):
            # initialize optimization problem and training functions
            ranges, ef = self.op.get_ef()
            nf = None
            if opName == 'TSP':
                nf = SwapNeighbor()
            else:
                nf = DiscreteChangeOneNeighbor(ranges)
            odd = DiscreteUniformDistribution(ranges)
            hcp = GenericHillClimbingProblem(ef, odd, nf)
            rhc = RandomizedHillClimbing(hcp)
            fit = FixedIterationTrainer(rhc, 10)

            # run experiment and train evaluation function
            start = time.clock()
            for i in range(0, self.maxIters, 10):
                fit.train()
                elapsed = time.clock() - start
                fe = ef.valueCallCount
                score = ef.value(rhc.getOptimal())
                ef.valueCallCount -= 1

                # write results to output file
                s = '{},{},{},{},{}\n'.format(i + 10, score, elapsed, fe, t)
                with open(fname, 'a+') as f:
                    f.write(s)
Пример #7
0
def run_rhc(t):
    fname = outfile.format('RHC', str(t + 1))
    ef = TravelingSalesmanRouteEvaluationFunction(points)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    rhc = RandomizedHillClimbing(hcp)
    fit = FixedIterationTrainer(rhc, 10)
    times = [0]
    for i in range(0, maxIters, 10):
        start = clock()
        fit.train()
        elapsed = time.clock() - start
        times.append(times[-1] + elapsed)
        fevals = ef.fevals
        score = ef.value(rhc.getOptimal())
        ef.fevals -= 1
        st = '{},{},{},{}\n'.format(i, score, times[-1], fevals)
        # print st
        base.write_to_file(fname, st)
    return
Пример #8
0
def run_rhc(t):
    fname = outfile.format('RHC', str(t + 1))
    ef = ContinuousPeaksEvaluationFunction(T)
    odd = DiscreteUniformDistribution(ranges)
    nf = DiscreteChangeOneNeighbor(ranges)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    rhc = RandomizedHillClimbing(hcp)
    fit = FixedIterationTrainer(rhc, 10)
    times = [0]
    for i in range(0, maxIters, 10):
        start = clock()
        fit.train()
        elapsed = time.clock() - start
        times.append(times[-1] + elapsed)
        fevals = ef.fevals
        score = ef.value(rhc.getOptimal())
        ef.fevals -= 1
        st = '{},{},{},{}\n'.format(i, score, times[-1], fevals)
        # print fname, st
        base.write_to_file(fname, st)

    return
Пример #9
0
ranges = array('i', fill)

ef = ContinuousPeaksEvaluationFunction(T)
odd = DiscreteUniformDistribution(ranges)
nf = DiscreteChangeOneNeighbor(ranges)
mf = DiscreteChangeOneMutation(ranges)
cf = SingleCrossOver()
df = DiscreteDependencyTree(.1, ranges)
hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

rhc = RandomizedHillClimbing(hcp)
fit = FixedIterationTrainer(rhc, 200000)
fit.train()
print "RHC: " + str(ef.value(rhc.getOptimal()))

sa = SimulatedAnnealing(1E11, .95, hcp)
fit = FixedIterationTrainer(sa, 200000)
fit.train()
print "SA: " + str(ef.value(sa.getOptimal()))

ga = StandardGeneticAlgorithm(200, 100, 10, gap)
fit = FixedIterationTrainer(ga, 1000)
fit.train()
print "GA: " + str(ef.value(ga.getOptimal()))

mimic = MIMIC(200, 20, pop)
fit = FixedIterationTrainer(mimic, 1000)
fit.train()
print "MIMIC: " + str(ef.value(mimic.getOptimal()))
Пример #10
0
def main():

    # The number of items
    NUM_ITEMS = 40
    # The number of copies each
    COPIES_EACH = 4
    # The maximum weight for a single element
    MAX_WEIGHT = 50
    # The maximum volume for a single element
    MAX_VOLUME = 50

    iterations = 20000
    gaIters = 1000
    mimicIters = 1000
    gaPop = 200
    gaMate = 150
    gaMutate = 25
    mimicSamples = 200
    mimicToKeep = 100
    saTemp = 100
    saCooling = .95
    alg = 'all'
    run = 0
    settings = []

    try:
        opts, args = getopt.getopt(sys.argv[1:], "ahrsgmn:N:c:w:v:i:", ["gaIters=", "mimicIters=","gaPop=", "gaMate=", "gaMutate=", "mimicSamples=", "mimicToKeep=", "saTemp=", "saCooling="])
    except:
        print 'knapsack.py -i <iterations> -n <NUM_ITEMS> -c <COPIES_EACH> -w <MAX_WEIGHT> -v <MAX_VOLUME>'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'knapsack.py -i <iterations> -n <NUM_ITEMS> -c <COPIES_EACH> -w <MAX_WEIGHT> -v <MAX_VOLUME>'
            sys.exit(1)
        elif opt == '-i':
            iterations = int(arg)
        elif opt == '-N':
            NUM_ITEMS = int(arg)
        elif opt == '-c':
            COPIES_EACH = int(arg)
        elif opt == '-w':
            MAX_WEIGHT = int(arg)
        elif opt == '-v':
            MAX_VOLUME = int(arg)
        elif opt == '-n':
            run = int(arg)
        elif opt == '-r':
            alg = 'RHC'
        elif opt == '-s':
            alg = 'SA'
        elif opt == '-g':
            alg = 'GA'
        elif opt == '-m':
            alg = 'MIMIC'
        elif opt == '-a':
            alg = 'all'
        elif opt == '--gaPop':
            gaPop = int(arg)
        elif opt == '--gaMate':
            gaMate = int(arg)
        elif opt == '--gaMutate':
            gaMutate = int(arg)
        elif opt == '--mimicSamples':
            mimicSamples = int(arg)
        elif opt == '--mimicToKeep':
            mimicToKeep = int(arg)
        elif opt == '--saTemp':
            saTemp = float(arg)
        elif opt == '--saCooling':
            saCooling = float(arg)
        elif opt == '--gaIters':
            gaIters = int(arg)
        elif opt == '--mimicIters':
            mimicIters = int(arg)
    vars ={
    'NUM_ITEMS' : NUM_ITEMS,
    'COPIES_EACH' : COPIES_EACH,
    'MAX_WEIGHT' : MAX_WEIGHT,
    'MAX_VOLUME' : MAX_VOLUME,
    'iterations' : iterations,
    'gaIters' : gaIters,
    'mimicIters' : mimicIters,
    'gaPop' : gaPop,
    'gaMate' : gaMate,
    'gaMutate' : gaMutate,
    'mimicSamples' : mimicSamples,
    'mimicToKeep' : mimicToKeep,
    'saTemp' : saTemp,
    'saCooling' : saCooling,
    'alg' : alg,
    'run' : run
    }

    settings = getSettings(alg, settings, vars)
    # Random number generator */
    random = Random()

    # The volume of the knapsack
    KNAPSACK_VOLUME = MAX_VOLUME * NUM_ITEMS * COPIES_EACH * .4

    # create copies
    fill = [COPIES_EACH] * NUM_ITEMS
    copies = array('i', fill)

    # create weights and volumes
    fill = [0] * NUM_ITEMS
    weights = array('d', fill)
    volumes = array('d', fill)
    for i in range(0, NUM_ITEMS):
        weights[i] = random.nextDouble() * MAX_WEIGHT
        volumes[i] = random.nextDouble() * MAX_VOLUME


    # create range
    fill = [COPIES_EACH + 1] * NUM_ITEMS
    ranges = array('i', fill)

    ef = KnapsackEvaluationFunction(weights, volumes, KNAPSACK_VOLUME, copies)
    odd = DiscreteUniformDistribution(ranges)
    nf = DiscreteChangeOneNeighbor(ranges)
    mf = DiscreteChangeOneMutation(ranges)
    cf = UniformCrossOver()
    df = DiscreteDependencyTree(.1, ranges)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
    pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

    if alg == 'RHC' or alg == 'all':
        rhc = RandomizedHillClimbing(hcp)
        fit = FixedIterationTrainer(rhc, iterations)
        fit.train()
        print "RHC: " + str(ef.value(rhc.getOptimal()))
        rows = []
        row = []
        row.append("Evaluation Function Value")
        row.append(str(ef.value(rhc.getOptimal())))
        rows.append(row)
        output2('Knapsack', 'RHC', rows, settings)
        rows = []
        buildFooter("Knapsack", "RHC", rows, settings)
        outputFooter("Knapsack", "RHC", rows , settings)
    if alg == 'SA' or alg == 'all':
        sa = SimulatedAnnealing(saTemp, saCooling, hcp)
        fit = FixedIterationTrainer(sa, iterations)
        fit.train()
        rows = []
        row = []
        row.append("Evaluation Function Value")
        row.append(ef.value(sa.getOptimal()))
        rows.append(row)
        print "SA: " + str(ef.value(sa.getOptimal()))
        output2('Knapsack', 'SA', rows, settings)
        rows = []
        buildFooter("Knapsack", "SA", rows, settings)
        outputFooter("Knapsack", "SA", rows, settings)
    if alg == 'GA' or alg == 'all':
        ga = StandardGeneticAlgorithm(gaPop, gaMate, gaMutate, gap)
        fit = FixedIterationTrainer(ga, gaIters)
        fit.train()
        rows = []
        row = []
        row.append("Evaluation Function Value")
        row.append(ef.value(ga.getOptimal()))
        rows.append(row)
        print "GA: " + str(ef.value(ga.getOptimal()))
        output2('Knapsack', 'GA', rows, settings)
        buildFooter("Knapsack", "GA", rows, settings)
        outputFooter("Knapsack", "GA", rows , settings)
    if alg == 'MIMIC' or alg == 'all':
        mimic = MIMIC(mimicSamples, mimicToKeep, pop)
        fit = FixedIterationTrainer(mimic, mimicIters)
        fit.train()
        print "MIMIC: " + str(ef.value(mimic.getOptimal()))
        rows = []
        row = []
        row.append("Evaluation Function Value")
        row.append(ef.value(mimic.getOptimal()))
        rows.append(row)
        output2('Knapsack', 'MIMIC', rows, settings)
        rows = []
        buildFooter("Knapsack", "MIMIC", rows, settings)
        outputFooter("Knapsack", "MIMIC", rows , settings)
network_bp = factory.createClassificationNetwork([inputLayer, hiddenLayer, outputLayer])
bp = BatchBackPropagationTrainer(set, network_bp, measure, RPROPUpdateRule())
cvt = ConvergenceTrainer(bp)
cvt.train()
print "\nBP training error:", errorRate(network_bp, train)
print "BP training confusion matrix:", confusionMatrix(network_bp, train)
print "    BP test error:", errorRate(network_bp, test)
print "    BP test confusion matrix:", confusionMatrix(network_bp, test)

# learn weights with randomized hill climbing
network_rhc = factory.createClassificationNetwork([inputLayer, hiddenLayer, outputLayer])
nnop_rhc = NeuralNetworkOptimizationProblem(set, network_rhc, measure)
rhc = RandomizedHillClimbing(nnop_rhc)
fit = FixedIterationTrainer(rhc, it_rhc)
fit.train()
op = rhc.getOptimal();
network_rhc.setWeights(op.getData())
print "\nRHC training error:", errorRate(network_rhc, train)
print "RHC training confusion matrix:", confusionMatrix(network_rhc, train)
print "    RHC test error:", errorRate(network_rhc, test)
print "    RHC test confusion matrix:", confusionMatrix(network_rhc, test)

# learn weights with simulated annealing
network_sa = factory.createClassificationNetwork([inputLayer, hiddenLayer, outputLayer])
nnop_sa = NeuralNetworkOptimizationProblem(set, network_sa, measure)
sa = SimulatedAnnealing(1E11, 0.95, nnop_sa)
fit = FixedIterationTrainer(sa, it_sa)
fit.train()
op = sa.getOptimal();
network_sa.setWeights(op.getData())
print "\nSA training error:", errorRate(network_sa, train)
Пример #12
0
    start_sa = time.time()
    fit_sa.train()
    end_sa = time.time()

    start_ga = time.time()
    fit_ga.train()
    end_ga = time.time()

    start_mimic = time.time()
    fit_mimic.train()
    end_mimic = time.time()

    # Result handling
    last_train_time_rhc = end_rhc - start_rhc
    rhc_train_time[repetition].append(last_train_time_rhc)
    rhc_accuracy[repetition].append(ef.value(rhc.getOptimal()))

    last_train_time_sa = end_sa - start_sa
    sa_train_time[repetition].append(last_train_time_sa)
    sa_accuracy[repetition].append(ef.value(sa.getOptimal()))

    last_train_time_ga = end_ga - start_ga
    ga_train_time[repetition].append(last_train_time_ga)
    ga_accuracy[repetition].append(ef.value(ga.getOptimal()))

    last_train_time_mimic = end_mimic - start_mimic
    mimic_train_time[repetition].append(last_train_time_mimic)
    mimic_accuracy[repetition].append(ef.value(mimic.getOptimal()))

    while current_iteration_count <= MAX_ITERATION - ITERATION_STEP:
        print("Computing for %d iterations" %
Пример #13
0
ranges = array('i', fill)

ef = ContinuousPeaksEvaluationFunction(T)
odd = DiscreteUniformDistribution(ranges)
nf = DiscreteChangeOneNeighbor(ranges)
mf = DiscreteChangeOneMutation(ranges)
cf = SingleCrossOver()
df = DiscreteDependencyTree(.1, ranges)
hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

rhc = RandomizedHillClimbing(hcp)
fit = FixedIterationTrainer(rhc, 200000)
fit.train()
print "RHC: " + str(ef.value(rhc.getOptimal()))

sa = SimulatedAnnealing(1E11, .95, hcp)
fit = FixedIterationTrainer(sa, 200000)
fit.train()
print "SA: " + str(ef.value(sa.getOptimal()))

ga = StandardGeneticAlgorithm(200, 100, 10, gap)
fit = FixedIterationTrainer(ga, 1000)
fit.train()
print "GA: " + str(ef.value(ga.getOptimal()))

mimic = MIMIC(200, 20, pop)
fit = FixedIterationTrainer(mimic, 1000)
fit.train()
print "MIMIC: " + str(ef.value(mimic.getOptimal()))
odd = DiscreteUniformDistribution(ranges)
nf = DiscreteChangeOneNeighbor(ranges)
mf = DiscreteChangeOneMutation(ranges)
cf = SingleCrossOver()
df = DiscreteDependencyTree(.1, ranges)
hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

from time import time

rhc = RandomizedHillClimbing(hcp)
fit = FixedIterationTrainer(rhc, 600000)
t0 = time()
fit.train()
print "RHC: " + str(ef.value(rhc.getOptimal())), "time taken", time() - t0

sa = SimulatedAnnealing(1E11, .95, hcp)
fit = FixedIterationTrainer(sa, 600000)

t0 = time()
fit.train()
print "SA: " + str(ef.value(sa.getOptimal())), "time taken", time() - t0

ga = StandardGeneticAlgorithm(200, 100, 10, gap)
fit = FixedIterationTrainer(ga, 20000)

t0 = time()
fit.train()

print "GA: " + str(ef.value(ga.getOptimal())), "time taken", time() - t0
Пример #15
0
def run_count_ones_experiments():
    OUTPUT_DIRECTORY = './output'
    N = 80
    fill = [2] * N
    ranges = array('i', fill)
    ef = CountOnesEvaluationFunction()
    odd = DiscreteUniformDistribution(ranges)
    nf = DiscreteChangeOneNeighbor(ranges)
    mf = DiscreteChangeOneMutation(ranges)
    cf = SingleCrossOver()
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
    max_iter = 5000
    outfile = OUTPUT_DIRECTORY + '/count_ones_{}_log.csv'

    # Randomized Hill Climber
    filename = outfile.format('rhc')
    with open(filename, 'w') as f:
        f.write('iteration,fitness,time\n')
    for it in range(0, max_iter, 10):
        rhc = RandomizedHillClimbing(hcp)
        fit = FixedIterationTrainer(rhc, it)
        start_time = time.clock()
        fit.train()
        elapsed_time = time.clock() - start_time
        # fevals = ef.fevals
        score = ef.value(rhc.getOptimal())
        data = '{},{},{}\n'.format(it, score, elapsed_time)
        print(data)
        with open(filename, 'a') as f:
            f.write(data)

    # Simulated Annealing
    filename = outfile.format('sa')
    with open(filename, 'w') as f:
        f.write('iteration,cooling_value,fitness,time\n')
    for cooling_value in (.19, .38, .76, .95):
        for it in range(0, max_iter, 10):
            sa = SimulatedAnnealing(100, cooling_value, hcp)
            fit = FixedIterationTrainer(sa, it)
            start_time = time.clock()
            fit.train()
            elapsed_time = time.clock() - start_time
            # fevals = ef.fevals
            score = ef.value(sa.getOptimal())
            data = '{},{},{},{}\n'.format(it, cooling_value, score, elapsed_time)
            print(data)
            with open(filename, 'a') as f:
                f.write(data)

    # Genetic Algorithm
    filename = outfile.format('ga')
    with open(filename, 'w') as f:
        f.write('iteration,population_size,to_mate,to_mutate,fitness,time\n')
    for population_size, to_mate, to_mutate in itertools.product([20], [4, 8, 16, 20], [0, 2, 4, 6]):
        for it in range(0, max_iter, 10):
            ga = StandardGeneticAlgorithm(population_size, to_mate, to_mutate, gap)
            fit = FixedIterationTrainer(ga, it)
            start_time = time.clock()
            fit.train()
            elapsed_time = time.clock() - start_time
            # fevals = ef.fevals
            score = ef.value(ga.getOptimal())
            data = '{},{},{},{},{},{}\n'.format(it, population_size, to_mate, to_mutate, score, elapsed_time)
            print(data)
            with open(filename, 'a') as f:
                f.write(data)

    # MIMIC
    filename = outfile.format('mm')
    with open(filename, 'w') as f:
        f.write('iterations,samples,to_keep,m,fitness,time\n')
    for samples, to_keep, m in itertools.product([50], [10], [0.1, 0.3, 0.5, 0.7, 0.9]):
        for it in range(0, 500, 10):
            df = DiscreteDependencyTree(m, ranges)
            pop = GenericProbabilisticOptimizationProblem(ef, odd, df)
            mm = MIMIC(samples, 20, pop)
            fit = FixedIterationTrainer(mm, it)
            start_time = time.clock()
            fit.train()
            elapsed_time = time.clock() - start_time
            # fevals = ef.fevals
            score = ef.value(mm.getOptimal())
            data = '{},{},{},{},{},{}\n'.format(it, samples, to_keep, m, score, elapsed_time)
            print(data)
            with open(filename, 'a') as f:
                f.write(data)
Пример #16
0
def main():
    """Run algorithms on the cancer dataset."""

    instances = initialize_instances()
    factory = BackPropagationNetworkFactory()
    measure = SumOfSquaresError()
    data_set = DataSet(instances)

    max_iterations = TRAINING_ITERATIONS

    hidden_layer_size = HIDDEN_LAYER

    # for _hidden_layer in xrange(HIDDEN_LAYER):
    # hidden_layer_size = _hidden_layer + 1

    network = None  # BackPropagationNetwork
    nnop = None  # NeuralNetworkOptimizationProblem
    oa = None  # OptimizationAlgorithm
    results = ""

    for restarts in xrange(1, 11):
        RandomOrderFilter().filter(data_set)
        train_test_split = TestTrainSplitFilter(TRAIN_TEST_SPLIT)
        train_test_split.filter(data_set)

        train_set = train_test_split.getTrainingSet()
        test_set = train_test_split.getTestingSet()

        network = factory.createClassificationNetwork(
            [INPUT_LAYER, hidden_layer_size, OUTPUT_LAYER])
        nnop = NeuralNetworkOptimizationProblem(train_set, network, measure)

        oa = RandomizedHillClimbing(nnop)

        start = time.time()
        correct = 0
        incorrect = 0

        train(oa, network, "RHC", train_set, test_set, measure, restarts)
        end = time.time()
        training_time = end - start

        optimal_instance = oa.getOptimal()
        network.setWeights(optimal_instance.getData())

        start = time.time()
        for instance in test_set.getInstances():
            network.setInputValues(instance.getData())
            network.run()

            predicted = instance.getLabel().getContinuous()
            actual = network.getOutputValues().get(0)

            if abs(predicted - actual) < 0.5:
                correct += 1
            else:
                incorrect += 1

        end = time.time()
        testing_time = end - start

        _results = ""
        _results += "\n[RHC] restarts=%d" % (restarts)
        _results += "\nResults for RHC: \nCorrectly classified %d instances." % (
            correct)
        _results += "\nIncorrectly classified %d instances.\nPercent correctly classified: %0.03f%%" % (
            incorrect, float(correct) / (correct + incorrect) * 100.0)
        _results += "\nTraining time: %0.03f seconds" % (training_time, )
        _results += "\nTesting time: %0.03f seconds\n" % (testing_time, )

        with open('out/rhc/restarts-%d.log' % (restarts), 'w') as f:
            f.write(_results)

        results += _results

    print results
Пример #17
0
def main():

    iterations = 200000
    alg = 'all'
    gaPop = 2000
    gaMate = 1500
    gaMutate = 250
    mimicSamples = 500
    mimicToKeep = 100
    saTemp = 1E12
    saCooling = .999
    gaIters = 1000
    mimicIters = 1000
    run = 0
    settings = []

    try:
        opts, args = getopt.getopt(sys.argv[1:], "ahrsgmn:i:", ["gaIters=", "mimicIters=", "gaPop=", "gaMate=", "gaMutate=", "mimicSamples=", "mimicToKeep=", "saTemp=", "saCooling="])
    except:
        print 'travelingsalesman.py -i <iterations>'
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print 'travelingsalesman.py -i <iterations>'
            sys.exit(1)
        elif opt == '-i':
            if arg < 1:
                print 'Iterations must be greater than 0'
                sys.exit(2)
            iterations = int(arg)
        elif opt == '-a':
            alg = 'all'
        elif opt == '-r':
            alg = 'RHC'
        elif opt == '-s':
            alg = 'SA'
        elif opt == '-g':
            alg = 'GA'
        elif opt == '-m':
            alg = 'MIMIC'
        elif opt == '--gaPop':
            if arg < 1:
                print 'Population must be greater than 0'
                sys.exit(2)
            gaPop = int(arg)
        elif opt == '--gaMate':
            if arg < 1:
                print 'Mating must be greater than 0'
                sys.exit(2)
            gaMate = int(arg)
        elif opt == '--gaMutate':
            if arg < 1:
                print 'Mutators must be greater than 0'
                sys.exit(2)
            gaMutate = int(arg)
        elif opt == '--mimicSamples':
            if arg < 1:
                print 'MIMIC samples must be greater than 0'
                sys.exit(2)
            mimicSamples = int(arg)
        elif opt == '--mimicToKeep':
            if arg < 1:
                print 'MIMIC to keep must be greater than 0'
                sys.exit(2)
            mimicToKeep = int(arg)
        elif opt == '--saTemp':
            saTemp = float(arg)
        elif opt == '--saCooling':
            saCooling = float(arg)
        elif opt == '-n':
            run = int(arg)
        elif opt == '--gaIters':
            if arg < 1:
                print 'GA Iterations must be greater than 0'
                sys.exit(2)
            gaIters = int(arg)
        elif opt == '--mimicIters':
            if arg < 1:
                print 'MIMIC Iterations must be greater than 0'
                sys.exit(2)
            mimicIters = int(arg)

    vars = {
            'iterations' : iterations,
            'alg' : alg,
            'gaPop' : gaPop,
            'gaMate' : gaMate,
            'gaMutate' : gaMutate,
            'mimicSamples' : mimicSamples,
            'mimicToKeep' : mimicToKeep,
            'saTemp' : saTemp,
            'saCooling' : saCooling,
            'gaIters' : gaIters,
            'mimicIters' : mimicIters,
            'run' : run
            }

    settings = getSettings(alg, settings, vars)
    if gaPop < gaMate or gaPop < gaMutate or gaMate < gaMutate:
        pebkac({gaPop: 'total population',gaMate : 'mating population', gaMutate : 'mutating population'}, alg, 'total population', settings)
    if mimicSamples < mimicToKeep:
        pebkac({mimicSamples: 'mimic samples', mimicToKeep : 'mimic to keep'}, alg, 'mimic samples', settings)
    prob = 'Traveling Sales Problem'
    invDist = {}
    cities = CityList()
    N = len(cities)
    #random = Random()
    points = [[0 for x in xrange(2)] for x in xrange(N)]
    for i in range(0, len(points)):
        coords = cities.getCoords(i)
        points[i][0] = coords[0]
        points[i][1] = coords[1]
    ef = TravelingSalesmanRouteEvaluationFunction(points)
    odd = DiscretePermutationDistribution(N)
    nf = SwapNeighbor()
    mf = SwapMutation()
    cf = TravelingSalesmanCrossOver(ef)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
    rows = []


    if alg == 'RHC' or alg == 'all':
        print '\n----------------------------------'
        print 'Using Random Hill Climbing'
        for label, setting in settings:
            print label + ":" + str(setting)
        rhc = RandomizedHillClimbing(hcp)
        fit = FixedIterationTrainer(rhc, iterations)
        fit.train()
        path = []
        for x in range(0,N):
            path.append(rhc.getOptimal().getDiscrete(x))
        output(prob, 'RHC', path, points, settings)
        rows = []
        row = []
        row.append("Inverse of Distance")
        row.append(ef.value(rhc.getOptimal()))
        rows.append(row)
        invDist['RHC'] = ef.value(rhc.getOptimal())
        buildFooter(prob, 'RHC', rows, settings)
        outputFooter(prob, 'RHC', rows, settings)


    if alg == 'SA' or alg == 'all':
        print 'Using Simulated Annealing'
        for label, setting in settings:
            print label + ":" + str(setting)
        sa = SimulatedAnnealing(saTemp, saCooling, hcp)
        fit = FixedIterationTrainer(sa, iterations)
        fit.train()
        path = []
        for x in range(0,N):
            path.append(sa.getOptimal().getDiscrete(x))
        output(prob, 'SA', path, points, settings)
        rows = []
        row = []
        row.append("Inverse of Distance")
        row.append(ef.value(sa.getOptimal()))
        rows.append(row)
        invDist['SA'] = ef.value(sa.getOptimal())
        buildFooter(prob, 'SA', rows, settings)
        outputFooter(prob, 'SA', rows, settings)

    if alg == 'GA' or alg == 'all':
        print '\n----------------------------------'
        print 'Using Genetic Algorithm'
        for label, setting in settings:
            print label + ":" + str(setting)
        ga = StandardGeneticAlgorithm(gaPop, gaMate, gaMutate, gap)
        fit = FixedIterationTrainer(ga, gaIters)
        fit.train()
        path = []
        for x in range(0,N):
            path.append(ga.getOptimal().getDiscrete(x))
        output(prob, 'GA', path, points, settings)
        rows = []
        row = []
        row.append("Inverse of Distance")
        row.append(ef.value(ga.getOptimal()))
        rows.append(row)
        invDist['GA'] = ef.value(ga.getOptimal())
        buildFooter(prob, 'GA', rows, settings)
        outputFooter(prob, 'GA', rows, settings)

    if alg == 'MIMIC' or alg == 'all':
        print '\n----------------------------------'
        print 'Using MIMIC'
        for label, setting in settings:
            print label + ":" + str(setting)
        # for mimic we use a sort encoding
        ef = TravelingSalesmanSortEvaluationFunction(points);
        fill = [N] * N
        ranges = array('i', fill)
        odd = DiscreteUniformDistribution(ranges);
        df = DiscreteDependencyTree(.1, ranges);
        pop = GenericProbabilisticOptimizationProblem(ef, odd, df);
        mimic = MIMIC(mimicSamples, mimicToKeep, pop)
        fit = FixedIterationTrainer(mimic, mimicIters)
        fit.train()
        path = []
        optimal = mimic.getOptimal()
        fill = [0] * optimal.size()
        ddata = array('d', fill)
        for i in range(0,len(ddata)):
            ddata[i] = optimal.getContinuous(i)
        order = ABAGAILArrays.indices(optimal.size())
        ABAGAILArrays.quicksort(ddata, order)
        output(prob, 'MIMIC', order, points, settings)
        rows = []
        row = []
        row.append("Inverse of Distance")
        row.append(ef.value(mimic.getOptimal()))
        rows.append(row)
        invDist['MIMIC'] = ef.value(mimic.getOptimal())
        buildFooter(prob, 'MIMIC', rows, settings)
        outputFooter(prob, 'MIMIC', rows, settings)


    maxn = max(len(key) for key in invDist)
    maxd = max(len(str(invDist[key])) for key in invDist)
    print "Results"
    for result in invDist:
        print "%-*s %s %-*s" % (len('Best Alg') + 2, result, ':', maxd, invDist[result])
    if alg == 'all':
        print "%-*s %s %-*s" % (len('Best Alg') + 2, 'Best Alg', ':', maxd, max(invDist.iterkeys(), key=(lambda key: invDist[key])))
    print '----------------------------------'
Пример #18
0
cf = SingleCrossOver()
df = DiscreteDependencyTree(.1, ranges)
hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

iters = 5000

t0 = time.time()
calls = []
results = []
for _ in range(runs):
    rhc = RandomizedHillClimbing(hcp)
    fit = FixedIterationTrainer(rhc, iters)
    fitness = fit.train()
    results.append(ef.value(rhc.getOptimal()))
    calls.append(ef.getTotalCalls())
    ef.clearCount()
print "RHC, average results , " + str(
    sum(results) / float(runs)) + ", countones-%d.txt" % N
print "RHC, average feval calls , " + str(
    sum(calls) / float(runs)) + ", countones-%d.txt" % N
t1 = time.time() - t0
print "RHC, average time , " + str(float(t1) / runs) + ", countones-%d.txt" % N

t0 = time.time()
calls = []
results = []
for _ in range(runs):
    sa = SimulatedAnnealing(1e10, .95, hcp)
    fit = FixedIterationTrainer(sa, iters)
Пример #19
0
def fourpeaksfunc(N, iterations):

    rhcMult = 200
    saMult = 200
    gaMult = 2
    mimicMult = 1

    optimalOut = []
    timeOut = []
    evalsOut = []

    T = N / 5
    fill = [2] * N
    ranges = array('i', fill)

    ef = FourPeaksEvaluationFunction(T)
    odd = DiscreteUniformDistribution(ranges)
    nf = DiscreteChangeOneNeighbor(ranges)
    mf = DiscreteChangeOneMutation(ranges)
    cf = SingleCrossOver()
    df = DiscreteDependencyTree(.1, ranges)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
    pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

    for niter in iterations:

        iterOptimalOut = [N, niter]
        iterTimeOut = [N, niter]
        iterEvals = [N, niter]

        start = time.time()
        rhc = RandomizedHillClimbing(hcp)
        fit = FixedIterationTrainer(rhc, niter * rhcMult)
        fit.train()
        end = time.time()
        rhcOptimal = ef.value(rhc.getOptimal())
        rhcTime = end - start
        print "RHC optimum: " + str(rhcOptimal)
        print "RHC time: " + str(rhcTime)
        iterOptimalOut.append(rhcOptimal)
        iterTimeOut.append(rhcTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        start = time.time()
        sa = SimulatedAnnealing(1E20, .8, hcp)
        fit = FixedIterationTrainer(sa, niter * saMult)
        fit.train()
        end = time.time()
        saOptimal = ef.value(sa.getOptimal())
        saTime = end - start
        print "SA optimum: " + str(saOptimal)
        print "SA time: " + str(saTime)
        iterOptimalOut.append(saOptimal)
        iterTimeOut.append(saTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        start = time.time()
        ga = StandardGeneticAlgorithm(200, 100, 10, gap)
        fit = FixedIterationTrainer(ga, niter * gaMult)
        fit.train()
        end = time.time()
        gaOptimal = ef.value(ga.getOptimal())
        gaTime = end - start
        print "GA optimum: " + str(gaOptimal)
        print "GA time: " + str(gaTime)
        iterOptimalOut.append(gaOptimal)
        iterTimeOut.append(gaTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        start = time.time()
        mimic = MIMIC(200, 20, pop)
        fit = FixedIterationTrainer(mimic, niter * mimicMult)
        fit.train()
        end = time.time()
        mimicOptimal = ef.value(mimic.getOptimal())
        mimicTime = end - start
        print "MIMIC optimum: " + str(mimicOptimal)
        print "MIMIC time: " + str(mimicTime)
        iterOptimalOut.append(mimicOptimal)
        iterTimeOut.append(mimicTime)
        functionEvals = ef.getNumEvals()
        ef.zeroEvals()
        iterEvals.append(functionEvals)

        optimalOut.append(iterOptimalOut)
        timeOut.append(iterTimeOut)
        evalsOut.append(iterEvals)

    return [optimalOut, timeOut, evalsOut]
Пример #20
0
for i in range(0, len(points)):
    points[i][0] = random.nextDouble()
    points[i][1] = random.nextDouble()

ef = TravelingSalesmanRouteEvaluationFunction(points)
odd = DiscretePermutationDistribution(N)
nf = SwapNeighbor()
mf = SwapMutation()
cf = TravelingSalesmanCrossOver(ef)
hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)

rhc = RandomizedHillClimbing(hcp)
fit = FixedIterationTrainer(rhc, 200000)
fit.train()
print "RHC Inverse of Distance: " + str(ef.value(rhc.getOptimal()))
print "Route:"
path = []
for x in range(0, N):
    path.append(rhc.getOptimal().getDiscrete(x))
print path

sa = SimulatedAnnealing(1e12, 0.999, hcp)
fit = FixedIterationTrainer(sa, 200000)
fit.train()
print "SA Inverse of Distance: " + str(ef.value(sa.getOptimal()))
print "Route:"
path = []
for x in range(0, N):
    path.append(sa.getOptimal().getDiscrete(x))
print path
Пример #21
0
    with open(fname, 'w') as f:
        f.write('iterations,fitness,time,fevals\n')
    ef = FlipFlopEvaluationFunction()
    odd = DiscreteUniformDistribution(ranges)
    nf = DiscreteChangeOneNeighbor(ranges)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    rhc = RandomizedHillClimbing(hcp)
    fit = FixedIterationTrainer(rhc, 10)
    times = [0]
    for i in range(0, maxIters, 10):
        start = clock()
        fit.train()
        elapsed = time.clock() - start
        times.append(times[-1] + elapsed)
        fevals = ef.fevals
        score = ef.value(rhc.getOptimal())
        ef.fevals -= 1
        st = '{},{},{},{}\n'.format(i, score, times[-1], fevals)
        print(st)
        with open(fname, 'a') as f:
            f.write(st)

# SA
for t in range(numTrials):
    for CE in [0.15, 0.35, 0.55, 0.75, 0.95]:
        fname = outfile.format('SA{}'.format(CE), str(t + 1))
        with open(fname, 'w') as f:
            f.write('iterations,fitness,time,fevals\n')
        ef = FlipFlopEvaluationFunction()
        odd = DiscreteUniformDistribution(ranges)
        nf = DiscreteChangeOneNeighbor(ranges)
Пример #22
0
def main():
    N=200
    tempDenom = 5
    T=N/tempDenom
    fill = [2] * N
    ranges = array('i', fill)
    iterations = 2000
    gaIters = 1000
    mimicIters = 1000
    gaPop = 200
    gaMate = 100
    gaMutate = 10
    mimicSamples = 200
    mimicToKeep = 20
    saTemp = 1E11
    saCooling = .95
    alg = 'all'
    run = 0
    settings = []

    try:
       opts, args = getopt.getopt(sys.argv[1:], "ahn:rsgN:m:t:i:", ["gaIters=", "mimicIters=","gaPop=", "gaMate=", "gaMutate=", "mimicSamples=", "mimicToKeep=", "saTemp=", "saCooling="])
    except:
       print 'knapsack.py -i <iterations> -n <NUM_ITEMS> -c <COPIES_EACH> -w <MAX_WEIGHT> -v <MAX_VOLUME>'
       sys.exit(2)
    for opt, arg in opts:
       if opt == '-h':
          print 'knapsack.py -i <iterations> -n <NUM_ITEMS> -c <COPIES_EACH> -w <MAX_WEIGHT> -v <MAX_VOLUME>'
          sys.exit(1)
       elif opt == '-i':
          iterations = int(arg)
       elif opt == '-N':
          N = int(arg)
       elif opt == '-t':
           T = float(arg)
       elif opt == '-d':
          tempDenom = int(arg)
       elif opt == '-r':
           alg = 'RHC'
       elif opt == '-a':
           alg = 'all'
       elif opt == '-s':
           alg = 'SA'
       elif opt == '-g':
           alg = 'GA'
       elif opt == '-m':
           alg = 'MIMIC'
       elif opt == '--gaPop':
          gaPop = int(arg)
       elif opt == '--gaMate':
          gaMate = int(arg)
       elif opt == '--gaMutate':
          gaMutate = int(arg)
       elif opt == '--mimicSamples':
          mimicSamples = int(arg)
       elif opt == '--mimicToKeep':
          mimicToKeep = int(arg)
       elif opt == '--saTemp':
          saTemp = float(arg)
       elif opt == '--saCooling':
          saCooling = float(arg)
       elif opt == '--gaIters':
          gaIters = int(arg)
       elif opt == '--mimicIters':
          mimicIters = int(arg)
       elif opt == '-n':
           run = int(arg)


    vars = {
        'N':N,
        'tempDenom':tempDenom,
        'T':T,
        'fill':fill,
        'ranges':ranges,
        'iterations' :iterations,
        'gaIters':gaIters,
        'mimicIters':mimicIters,
        'gaPop' :gaPop,
        'gaMate' :gaMate,
        'gaMutate' :gaMutate,
        'mimicSamples' : mimicSamples,
        'mimicToKeep' : mimicToKeep,
        'saTemp' : saTemp,
        'saCooling' : saCooling,
        'alg' : alg,
        'run' : run
    }

    settings = getSettings(alg, settings, vars)

    T=N/tempDenom
    fill = [2] * N
    ranges = array('i', fill)

    ef = FourPeaksEvaluationFunction(T)
    odd = DiscreteUniformDistribution(ranges)
    nf = DiscreteChangeOneNeighbor(ranges)
    mf = DiscreteChangeOneMutation(ranges)
    cf = SingleCrossOver()
    df = DiscreteDependencyTree(.1, ranges)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
    pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

    if alg == 'RHC' or alg == 'all':
        rhc = RandomizedHillClimbing(hcp)
        fit = FixedIterationTrainer(rhc, iterations)
        fit.train()
        rows = []
        row = []
        row.append("Evaluation Function Value")
        row.append(ef.value(rhc.getOptimal()))
        rows.append(row)
        print "RHC: " + str(ef.value(rhc.getOptimal()))
        output2('4Peaks', 'RHC', rows, settings)
        rows = []
        buildFooter("4Peaks", "RHC", rows, settings),
        outputFooter("4Peaks", "RHC", rows,   settings)

    if alg == 'SA' or alg == 'all':
        sa = SimulatedAnnealing(saTemp, saCooling, hcp)
        fit = FixedIterationTrainer(sa, iterations)
        fit.train()
        rows = []
        row = []
        row.append("Evaluation Function Value")
        row.append(ef.value(sa.getOptimal()))
        rows.append(row)
        print "SA: " + str(ef.value(sa.getOptimal()))
        output2('4Peaks', 'SA', rows, settings)
        rows = []
        buildFooter("4Peaks", "SA", rows, settings)
        outputFooter("4Peaks", "SA", rows, settings)

    if alg == 'GA' or alg == 'all':
        ga = StandardGeneticAlgorithm(gaPop, gaMate, gaMutate, gap)
        fit = FixedIterationTrainer(ga, gaIters)
        fit.train()
        print "GA: " + str(ef.value(ga.getOptimal()))
        rows = []
        row = []
        row.append("Evaluation Function Value")
        row.append(ef.value(ga.getOptimal()))
        rows.append(row)
        output2('4Peaks', 'GA', rows, settings)
        rows = []
        buildFooter("4Peaks", "GA", rows, settings)
        outputFooter("4Peaks", "GA", rows , settings)

    if alg == 'MIMIC' or alg == 'all':
        mimic = MIMIC(mimicSamples, mimicToKeep, pop)
        fit = FixedIterationTrainer(mimic, mimicIters)
        fit.train()
        print "MIMIC: " + str(ef.value(mimic.getOptimal()))
        rows = []
        row = []
        row.append("Evaluation Function Value")
        row.append(ef.value(mimic.getOptimal()))
        rows.append(row)
        output2('4Peaks', 'MIMIC', rows, settings)
        rows = []
        buildFooter("4Peaks", "GA", rows, settings)
        outputFooter("4Peaks", "MIMIC", rows, settings)
Пример #23
0
def solveit(oaname, params):
    iterations = 10000
    tryi = 1
    # Random number generator */
    random = Random()
    # The number of items
    NUM_ITEMS = 40
    # The number of copies each
    COPIES_EACH = 4
    # The maximum weight for a single element
    MAX_WEIGHT = 50
    # The maximum volume for a single element
    MAX_VOLUME = 50
    # The volume of the knapsack
    KNAPSACK_VOLUME = MAX_VOLUME * NUM_ITEMS * COPIES_EACH * .4

    # create copies
    fill = [COPIES_EACH] * NUM_ITEMS
    copies = array('i', fill)

    # create weights and volumes
    fill = [0] * NUM_ITEMS
    weights = array('d', fill)
    volumes = array('d', fill)
    for i in range(0, NUM_ITEMS):
        weights[i] = random.nextDouble() * MAX_WEIGHT
        volumes[i] = random.nextDouble() * MAX_VOLUME

    # create range
    fill = [COPIES_EACH + 1] * NUM_ITEMS
    ranges = array('i', fill)

    ef = KnapsackEvaluationFunction(weights, volumes, KNAPSACK_VOLUME, copies)
    odd = DiscreteUniformDistribution(ranges)
    nf = DiscreteChangeOneNeighbor(ranges)
    mf = DiscreteChangeOneMutation(ranges)
    cf = UniformCrossOver()
    df = DiscreteDependencyTree(.1, ranges)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
    pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

    if oaname == 'RHC':
        iterations = int(params[0])
        tryi = int(params[1])
        oa = RandomizedHillClimbing(hcp)
    if oaname == 'SA':
        oa = SimulatedAnnealing(float(params[0]), float(params[1]), hcp)
    if oaname == 'GA':
        iterations = 1000
        oa = StandardGeneticAlgorithm(int(params[0]), int(params[1]),
                                      int(params[2]), gap)
    if oaname == 'MMC':
        iterations = 1000
        oa = MIMIC(int(params[0]), int(params[1]), pop)

    print "Running %s using %s for %d iterations, try %d" % (
        oaname, ','.join(params), iterations, tryi)
    print "=" * 20
    starttime = timeit.default_timer()
    output = []
    for i in range(iterations):
        oa.train()
        if i % 10 == 0:
            optimal = oa.getOptimal()
            score = ef.value(optimal)
            elapsed = int(timeit.default_timer() - starttime)
            output.append([str(i), str(score), str(elapsed)])

    print 'score: %.3f' % score
    print 'train time: %d secs' % (int(timeit.default_timer() - starttime))

    scsv = 'kn-%s-%s.csv' % (oaname, '-'.join(params))
    print "Saving to %s" % (scsv),
    with open(scsv, 'w') as csvf:
        writer = csv.writer(csvf)
        for row in output:
            writer.writerow(row)
    print "saved."
    print "=" * 20
Пример #24
0
from time import time
f = open("experiments/results/knapsack_optimal2.txt", "w")

f.write("starting RHC\n")
rhc = RandomizedHillClimbing(hill_climbing_problem)
score = 0
iters = 0
t0 = time()

while iters < 80000:
    score = rhc.train()
    f.write(str(iters) + "," + str(score) +"\n")
    iters += 1


print "RHC: " + str(ef.value(rhc.getOptimal())), "time taken", time() - t0, "Iterations:", iters

f.write("starting SA\n")
sa = SimulatedAnnealing(1E13, .95, hill_climbing_problem)
t0 = time()
iters = 0
score = 0

while iters < 80000:
    score = sa.train()
    f.write(str(iters) + "," + str(score) + "\n")
    iters += 1

print "SA: " + str(ef.value(sa.getOptimal())), "time taken", time() - t0, "Iterations", iters

ga = StandardGeneticAlgorithm(200, 100, 10, genetic_problem)
cf = UniformCrossOver()
df = DiscreteDependencyTree(.1, ranges)
hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

# -- begin problem

t0 = time.time()
calls = []
results = []
for _ in range(runs):
    rhc = RandomizedHillClimbing(hcp)
    fit = FixedIterationTrainer(rhc, iters)
    fitness = fit.train()
    results.append(ef.value(rhc.getOptimal()))
    calls.append(ef.getTotalCalls())    
    ef.clearCount()
print "RHC, average results , " + str(sum(results)/float(runs))
print "RHC, average feval calls , " + str(sum(calls)/float(runs))
t1 = time.time() - t0
print "RHC, average time , " + str(float(t1)/runs)



t0 = time.time()
calls = []
results = []
for _ in range(runs):
    sa = SimulatedAnnealing(1E11, .95, hcp)
    fit = FixedIterationTrainer(sa, iters)
Пример #26
0
def run_knapsack():
    # Random number generator */
    random = Random()
    # The number of items
    NUM_ITEMS = 40
    # The number of copies each
    COPIES_EACH = 4
    # The maximum weight for a single element
    MAX_WEIGHT = 50
    # The maximum volume for a single element
    MAX_VOLUME = 50
    # The volume of the knapsack
    KNAPSACK_VOLUME = MAX_VOLUME * NUM_ITEMS * COPIES_EACH * .4

    # create copies
    fill = [COPIES_EACH] * NUM_ITEMS
    copies = array('i', fill)

    # create weights and volumes
    fill = [0] * NUM_ITEMS
    weights = array('d', fill)
    volumes = array('d', fill)
    for i in range(0, NUM_ITEMS):
        weights[i] = random.nextDouble() * MAX_WEIGHT
        volumes[i] = random.nextDouble() * MAX_VOLUME

    # create range
    fill = [COPIES_EACH + 1] * NUM_ITEMS
    ranges = array('i', fill)

    ef = KnapsackEvaluationFunction(weights, volumes, KNAPSACK_VOLUME, copies)
    odd = DiscreteUniformDistribution(ranges)
    nf = DiscreteChangeOneNeighbor(ranges)
    mf = DiscreteChangeOneMutation(ranges)
    cf = UniformCrossOver()
    df = DiscreteDependencyTree(.1, ranges)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
    pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

    iters = [50, 100, 250, 500, 1000, 2500, 5000, 10000, 25000, 50000, 100000]
    num_repeats = 5

    rhc_results = []
    rhc_times = []
    for i in iters:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            rhc = RandomizedHillClimbing(hcp)
            fit = FixedIterationTrainer(rhc, i)
            fit.train()
            end = time.time()
            rhc_results.append(ef.value(rhc.getOptimal()))
            rhc_times.append(end - start)
            #print "RHC: " + str(ef.value(rhc.getOptimal()))

    sa_results = []
    sa_times = []
    for i in iters:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            sa = SimulatedAnnealing(100, .95, hcp)
            fit = FixedIterationTrainer(sa, i)
            fit.train()
            end = time.time()

            sa_results.append(ef.value(sa.getOptimal()))
            sa_times.append(end - start)
            #print "SA: " + str(ef.value(sa.getOptimal()))

    ga_results = []
    ga_times = []
    for i in iters:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            ga = StandardGeneticAlgorithm(200, 150, 25, gap)
            fit = FixedIterationTrainer(ga, i)
            fit.train()
            end = time.time()
            ga_results.append(ef.value(sa.getOptimal()))
            ga_times.append(end - start)
            #print "GA: " + str(ef.value(ga.getOptimal()))

    mimic_results = []
    mimic_times = []
    for i in iters[0:6]:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            mimic = MIMIC(200, 100, pop)
            fit = FixedIterationTrainer(mimic, i)
            fit.train()
            end = time.time()
            mimic_results.append(ef.value(mimic.getOptimal()))
            mimic_times.append(end - start)
            #print "MIMIC: " + str(ef.value(mimic.getOptimal()))

    with open('knapsack.csv', 'w') as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow(rhc_results)
        writer.writerow(rhc_times)
        writer.writerow(sa_results)
        writer.writerow(sa_times)
        writer.writerow(ga_results)
        writer.writerow(ga_times)
        writer.writerow(mimic_results)
        writer.writerow(mimic_times)

    return rhc_results, rhc_times, sa_results, sa_times, ga_results, ga_times, mimic_results, mimic_times
Пример #27
0
sa_acc = []
ga_times = []
ga_acc = []
mimic_times = []
mimic_acc = []

NUMBER_ITERATIONS = 1000
for iteration in xrange(NUMBER_ITERATIONS):
    if iteration % 10 == 0:
        rhc = RandomizedHillClimbing(hcp)
        fit = FixedIterationTrainer(rhc, iteration)
        start = time.time()
        fit.train()
        end = time.time()
        rhc_times.append(end - start)
        rhc_acc.append(ef.value(rhc.getOptimal()))
        print "RHC: " + str(ef.value(rhc.getOptimal()))

        sa = SimulatedAnnealing(1E11, .95, hcp)
        fit = FixedIterationTrainer(sa, iteration)
        start = time.time()
        fit.train()
        end = time.time()
        sa_times.append(end - start)
        sa_acc.append(ef.value(sa.getOptimal()))
        print "SA: " + str(ef.value(sa.getOptimal()))

        ga = StandardGeneticAlgorithm(200, 100, 10, gap)
        fit = FixedIterationTrainer(ga, iteration)
        start = time.time()
        fit.train()
Пример #28
0
hill_climbing_output = "salesman_hill_climbing.csv"
annealing_output = "salesman_annealing.csv"
genetic_output = "salesman_genetic.csv"
mimic_output = "salesman_mimic.csv"

# HILL CLIMBING
for i in range(trials):
    rhc = RandomizedHillClimbing(hcp)
    fit = FixedIterationTrainer(rhc, 200000)

    start = clock()
    fit.train()
    end = clock()
    total_time = end - start
    max_fit = ef.value(rhc.getOptimal())
    time_optimum = [total_time, max_fit]
    hill_climbing.append(time_optimum)
    print "RHC Inverse of Distance: " + str(ef.value(rhc.getOptimal()))
    print "Route:"
    path = []
    for x in range(0, N):
        path.append(rhc.getOptimal().getDiscrete(x))
    print path

# ANNEALING
for i in range(trials):
    sa = SimulatedAnnealing(1E12, .999, hcp)
    fit = FixedIterationTrainer(sa, 200000)
    start = clock()
    fit.train()
Пример #29
0
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

rhc = RandomizedHillClimbing(hcp)
sa = SimulatedAnnealing(100, .95, hcp)
ga = StandardGeneticAlgorithm(20, 20, 0, gap)
mimic = MIMIC(50, 10, pop)

rhc_f = open('out/op/countones/rhc.csv', 'w')
sa_f = open('out/op/countones/sa.csv', 'w')
ga_f = open('out/op/countones/ga.csv', 'w')
mimic_f = open('out/op/countones/mimic.csv', 'w')

for i in range(ITERATIONS):
    rhc.train()
    rhc_fitness = ef.value(rhc.getOptimal())
    rhc_f.write('{},{}\n'.format(i, rhc_fitness))

    sa.train()
    sa_fitness = ef.value(sa.getOptimal())
    sa_f.write('{},{}\n'.format(i, sa_fitness))

    ga.train()
    ga_fitness = ef.value(ga.getOptimal())
    ga_f.write('{},{}\n'.format(i, ga_fitness))

    mimic.train()
    mimic_fitness = ef.value(mimic.getOptimal())
    mimic_f.write('{},{}\n'.format(i, mimic_fitness))

rhc_f.close()
def run_traveling_salesman():
    # set N value.  This is the number of points
    N = 50
    random = Random()

    points = [[0 for x in xrange(2)] for x in xrange(N)]
    for i in range(0, len(points)):
        points[i][0] = random.nextDouble()
        points[i][1] = random.nextDouble()

    ef = TravelingSalesmanRouteEvaluationFunction(points)
    odd = DiscretePermutationDistribution(N)
    nf = SwapNeighbor()
    mf = SwapMutation()
    cf = TravelingSalesmanCrossOver(ef)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)

    iters = [50, 100, 250, 500, 1000, 2500, 5000, 10000, 25000, 50000, 100000]
    num_repeats = 5

    rhc_results = []
    rhc_times = []
    for i in iters:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            rhc = RandomizedHillClimbing(hcp)
            fit = FixedIterationTrainer(rhc, i)
            fit.train()
            end = time.time()
            rhc_results.append(ef.value(rhc.getOptimal()))
            rhc_times.append(end - start)
            print "RHC Inverse of Distance: " + str(ef.value(rhc.getOptimal()))
            # print "Route:"
            # path = []
            # for x in range(0,N):
            #     path.append(rhc.getOptimal().getDiscrete(x))
            # print path

    sa_results = []
    sa_times = []
    for i in iters:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            sa = SimulatedAnnealing(1E12, .999, hcp)
            fit = FixedIterationTrainer(sa, i)
            fit.train()
            sa_results.append(ef.value(sa.getOptimal()))
            sa_times.append(end - start)
            print "SA Inverse of Distance: " + str(ef.value(sa.getOptimal()))
            # print "Route:"
            # path = []
            # for x in range(0,N):
            #     path.append(sa.getOptimal().getDiscrete(x))
            # print path

    ga_results = []
    ga_times = []
    for i in iters:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            ga = StandardGeneticAlgorithm(2000, 1500, 250, gap)
            fit = FixedIterationTrainer(ga, i)
            fit.train()
            end = time.time()
            ga_results.append(ef.value(ga.getOptimal()))
            print "GA Inverse of Distance: " + str(ef.value(ga.getOptimal()))
            ga_times.append(end - start)
            # print "Route:"
            # path = []
            # for x in range(0,N):
            #     path.append(ga.getOptimal().getDiscrete(x))
            # print path

    # for mimic we use a sort encoding
    ef = TravelingSalesmanSortEvaluationFunction(points)
    fill = [N] * N
    ranges = array('i', fill)
    odd = DiscreteUniformDistribution(ranges)
    df = DiscreteDependencyTree(.1, ranges)
    pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

    mimic_results = []
    mimic_times = []
    for i in iters[0:6]:
        print(i)
        for j in range(num_repeats):
            start = time.time()
            mimic = MIMIC(500, 100, pop)
            fit = FixedIterationTrainer(mimic, i)
            fit.train()
            end = time.time()

            mimic_results.append(ef.value(mimic.getOptimal()))
            print "MIMIC Inverse of Distance: " + str(
                ef.value(mimic.getOptimal()))
            # print "Route:"
            # path = []
            # optimal = mimic.getOptimal()
            # fill = [0] * optimal.size()
            # ddata = array('d', fill)
            # for i in range(0,len(ddata)):
            #     ddata[i] = optimal.getContinuous(i)
            # order = ABAGAILArrays.indices(optimal.size())
            # ABAGAILArrays.quicksort(ddata, order)
            # print order
            mimic_times.append(end - start)

    with open('travelingsalesman.csv', 'w') as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow(rhc_results)
        writer.writerow(rhc_times)
        writer.writerow(sa_results)
        writer.writerow(sa_times)
        writer.writerow(ga_results)
        writer.writerow(ga_times)
        writer.writerow(mimic_results)
        writer.writerow(mimic_times)

    return rhc_results, rhc_times, sa_results, sa_times, ga_results, ga_times, mimic_results, mimic_times
Пример #31
0
        for i in range(0, len(points)):
            points[i][0] = random.nextDouble()
            points[i][1] = random.nextDouble()

        ef = TravelingSalesmanRouteEvaluationFunction(points)
        odd = DiscretePermutationDistribution(N)
        nf = SwapNeighbor()
        mf = SwapMutation()
        cf = TravelingSalesmanCrossOver(ef)
        hcp = GenericHillClimbingProblem(ef, odd, nf)

        start = time.time()
        rhc = RandomizedHillClimbing(hcp)
        fit = FixedIterationTrainer(rhc, num_iterations)
        fit.train()
        value = str(ef.value(rhc.getOptimal()))
        print "RHC Inverse of Distance: " + value
        end = time.time()
        print "Route:"
        path = []
        for x in range(0, N):
            path.append(rhc.getOptimal().getDiscrete(x))
        print path
        print "Time -->", end - start

        results = {
            'num_iterations': num_iterations,
            'value': value,
            'time': end - start
        }
def solveit(oaname, params):
    # set N value.  This is the number of points
    N = 50
    iterations = 1000
    tryi = 1
    random = Random()

    points = [[0 for x in xrange(2)] for x in xrange(N)]
    for i in range(0, len(points)):
        points[i][0] = random.nextDouble()
        points[i][1] = random.nextDouble()

    ef = TravelingSalesmanRouteEvaluationFunction(points)
    odd = DiscretePermutationDistribution(N)
    nf = SwapNeighbor()
    mf = SwapMutation()
    cf = TravelingSalesmanCrossOver(ef)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)

    if oaname == "RHC":
        iterations = int(params[0])
        tryi = int(params[1])
        oa = RandomizedHillClimbing(hcp)
    if oaname == "SA":    
        oa = SimulatedAnnealing(float(params[0]), float(params[1]), hcp)
    if oaname == "GA":
        iterations=1000
        oa = StandardGeneticAlgorithm(int(params[0]), int(params[1]), int(params[2]), gap)
    if oaname == "MMC":
        iterations=1000
        # for mimic we use a sort encoding
        ef = TravelingSalesmanSortEvaluationFunction(points)
        fill = [N] * N
        ranges = array('i', fill)
        odd = DiscreteUniformDistribution(ranges)
        df = DiscreteDependencyTree(.1, ranges)
        pop = GenericProbabilisticOptimizationProblem(ef, odd, df)
        oa = MIMIC(int(params[0]), int(params[1]), pop)

    print "Running %s using %s for %d iterations, try %d" % (oaname, ','.join(params), iterations, tryi)
    print "="*20
    starttime = timeit.default_timer()
    output = []
    for i in range(iterations):
        oa.train()
        if i%10 == 0:
            optimal = oa.getOptimal()
            score = ef.value(optimal)
            elapsed = int(timeit.default_timer()-starttime)
            output.append([str(i), str(score), str(elapsed)])

    print 'Inverse of Distance [score]: %.3f' % score
    print 'train time: %d secs' % (int(timeit.default_timer()-starttime))

    scsv = 'tsp-%s-%s.csv' % (oaname, '-'.join(params))
    print "Saving to %s" % (scsv),
    with open(scsv, 'w') as csvf:
        writer = csv.writer(csvf)
        for row in output:
            writer.writerow(row)
    print "saved."
    print "="*20

    print "Route:"
    if oaname == 'MMC':
        optimal = oa.getOptimal()
        fill = [0] * optimal.size()
        ddata = array('d', fill)
        for i in range(0,len(ddata)):
            ddata[i] = optimal.getContinuous(i)
        order = ABAGAILArrays.indices(optimal.size())
        ABAGAILArrays.quicksort(ddata, order)
        print order
    else:
        path = []
        for x in range(0,N):
            path.append(oa.getOptimal().getDiscrete(x))
        print path
Пример #33
0
    odd = DiscreteUniformDistribution(ranges)
    nf = DiscreteChangeOneNeighbor(ranges)
    mf = DiscreteChangeOneMutation(ranges)
    cf = SingleCrossOver()
    df = DiscreteDependencyTree(.1, ranges)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
    pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

    rhc = RandomizedHillClimbing(hcp)
    fit = FixedIterationTrainer(rhc, 100)
    start = time.time()
    fit.train()
    end = time.time()
    training_time = end - start
    print "RHC: " + str(ef.value(rhc.getOptimal()))
    OUTFILE = "%s%s.csv" % (OUTFILE_BASE, "RHC")
    with open(OUTFILE, 'a+') as f:
        f.write("%d,%f,%f\n" % (N, training_time, ef.value(rhc.getOptimal())))

    sa = SimulatedAnnealing(1E11, .95, hcp)
    fit = FixedIterationTrainer(sa, 100)
    start = time.time()
    fit.train()
    end = time.time()
    training_time = end - start
    print "SA: " + str(ef.value(sa.getOptimal()))
    OUTFILE = "%s%s.csv" % (OUTFILE_BASE, "SA")
    with open(OUTFILE, 'a+') as f:
        f.write("%d,%f,%f\n" % (N, training_time, ef.value(sa.getOptimal())))
Пример #34
0
hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

nsample = 10
niters = [50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000]

#-- R-Hill Climbing
rhc = RandomizedHillClimbing(hcp)
for iters in niters:
    start = time.time()
    fit = FixedIterationTrainer(rhc, iters)
    value = 0
    for isample in range(nsample):
        fit.train()
        value += ef.value(rhc.getOptimal())
    end = time.time()
    clock_time = (end - start) / nsample
    value = round(value / nsample, 2)
    print "RHC " + str(value), iters, clock_time

#-- Simulated Annealing
sa = SimulatedAnnealing(1E11, .95, hcp)
for iters in niters:
    start = time.time()
    fit = FixedIterationTrainer(sa, iters)
    value = 0
    for isample in range(nsample):
        fit.train()
        value += ef.value(sa.getOptimal())
    end = time.time()
Пример #35
0
# ranges = [random.randint(1, N) for i in range(N)]
ef = NQueensFitnessFunction()
odd = DiscretePermutationDistribution(N)
nf = SwapNeighbor()
mf = SwapMutation()
cf = SingleCrossOver()
df = DiscreteDependencyTree(.1)
hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

rhc = RandomizedHillClimbing(hcp)
fit = FixedIterationTrainer(rhc, 200000)
fit.train()
rhc_opt = ef.value(rhc.getOptimal())
print("RHC: " + str(rhc_opt))
# print "RHC: Board Position: "
# print(ef.boardPositions())

print("============================")

sa = SimulatedAnnealing(1E1, .1, hcp)
fit = FixedIterationTrainer(sa, 200000)
fit.train()
sa_opt = ef.value(sa.getOptimal())
print("SA: " + str(sa_opt))
# print("SA: Board Position: ")
# print(ef.boardPositions())

print("============================")
        points[i][1] = random.nextDouble()

    ef = TravelingSalesmanRouteEvaluationFunction(points)
    odd = DiscretePermutationDistribution(N)
    nf = SwapNeighbor()
    mf = SwapMutation()
    cf = TravelingSalesmanCrossOver(ef)
    hcp = GenericHillClimbingProblem(ef, odd, nf)
    gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)

    expt = "expt_avg"

    rhc = RandomizedHillClimbing(hcp)
    fit = FixedIterationTrainer(rhc, 200000)
    score_RHC.append(train(rhc, "RHC", ef, 200000, "test", expt))
    print "RHC Inverse of Distance: " + str(ef.value(rhc.getOptimal()))

    sa = SimulatedAnnealing(1E9, .98, hcp)
    fit = FixedIterationTrainer(sa, 200000)
    score_SA.append(train(sa, "SA", ef, 200000, "test", expt))
    print "SA Inverse of Distance: " + str(ef.value(sa.getOptimal()))

    ga = StandardGeneticAlgorithm(225, 40, 5, gap)
    fit = FixedIterationTrainer(ga, 1000)
    score_GA.append(train(ga, "GA", ef, 40000, "test", expt))
    print "GA Inverse of Distance: " + str(ef.value(ga.getOptimal()))

    # for mimic we use a sort encoding
    ef = TravelingSalesmanSortEvaluationFunction(points)
    fill = [N] * N
    ranges = array('i', fill)
Пример #37
0
df = DiscreteDependencyTree(.1, ranges)
hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

iters_list = [100, 500, 1000, 2500, 5000, 7500, 10000, 20000]

print "Random Hill Climbing"
rhc = RandomizedHillClimbing(hcp)
for iters in iters_list:
    fit = FixedIterationTrainer(rhc, iters)
    start = time.time()
    fit.train()
    dur = time.time() - start
    print "Iters: " + str(iters) + ", Fitness: " + str(
        ef.value(rhc.getOptimal())) + ", Dur: " + str(dur)

print "Simulated Annealing"
temp = 100000
cooling_rate = 0.85
sa = SimulatedAnnealing(temp, 0.85, hcp)
for iters in iters_list:
    fit = FixedIterationTrainer(sa, iters)
    start = time.time()
    fit.train()
    dur = time.time() - start
    print "Iters: " + str(iters) + ", Fitness: " + str(
        ef.value(sa.getOptimal())) + ", Dur: " + str(dur)

print "Genetic Algorithm"
ga = StandardGeneticAlgorithm(2 * N, 300, 100, gap)
Пример #38
0
cf = SingleCrossOver()
df = DiscreteDependencyTree(.1, ranges)

hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

times = ""
print "RHC:"
for x in range(20):
    start = time.time()
    iterations = (x + 1) * 2500
    rhc = RandomizedHillClimbing(hcp)
    fit = FixedIterationTrainer(rhc, iterations)
    fit.train()
    print(str(ef.value(rhc.getOptimal())))
    end = time.time()
    times += "\n%0.03f" % (end - start)
print(times)

times = ""
print "SA:"
for x in range(20):
    start = time.time()
    iterations = (x + 1) * 2500
    sa = SimulatedAnnealing(1E11, .95, hcp)
    fit = FixedIterationTrainer(sa, iterations)
    fit.train()
    print(str(ef.value(sa.getOptimal())))
    end = time.time()
    times += "\n%0.03f" % (end - start)
df = DiscreteDependencyTree(.1, ranges)
hcp = GenericHillClimbingProblem(ef, odd, nf)
gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
pop = GenericProbabilisticOptimizationProblem(ef, odd, df)

timeout = 1E6

# first find the global optimum by running for a long time
hcp0 = GenericHillClimbingProblem(ef, odd, nf)
rhc0 = RandomizedHillClimbing(hcp0)
i = 0
max = 0
while (i < timeout/10):
    rhc0.train()
    i += 1
    max = ef.value(rhc0.getOptimal())
    print "rhc0,", i,",", max
goal = max
pop0 = GenericProbabilisticOptimizationProblem(ef, odd, df)
mimic0 = MIMIC(200, 100, pop)
i = 0
while ( i< timeout/1000):
    mimic0.train()
    i += 1
    max = ef.value(mimic0.getOptimal())
    print "mimic0,", i,",", max
if (max > goal):
    goal = max
gap0 = GenericGeneticAlgorithmProblem(ef, odd, mf, cf)
ga0 = StandardGeneticAlgorithm(200, 100, 25, gap0)
i = 0