Пример #1
0
    def forward(self, x, xr):
        '''
        the forward function
        :param x: the first input
        :param xr: the second input
        :return: the output
        '''

        # convolution
        x = self.Conv_classifer(x)
        if self.maxpooling_dir:
            # global average polling of cnn features map in direction of channels
            x = F.adaptive_avg_pool2d(x, (x.size()[1], 1))
        else:
            # global max polling of cnn features map in direction of words
            x = F.adaptive_max_pool2d(x, (x.size()[2], 1))

        x = x.view(x.size()[0], -1)

        if self.padding:
            x = nn.ConstantPad1d((0, self.w_size - x.size()[1]), 0)(x)

        if self.xr:
            x = torch.cat((x, xr), 1)

        x = self.FC_classifier(x)

        return x
Пример #2
0
    def forward(self, x, xr):
        activity_layers, _ = self.bert_model(x)
        if not isinstance(activity_layers, torch.Tensor):
            activity_layers = activity_layers[-1]

        activity_layers = activity_layers.permute(0, 2, 1)
        y1 = self.cnn1(activity_layers[:, :, :], xr)

        activity_layers = torch.stack(activity_layers)
        activity_layers = activity_layers.permute(1, 3, 2, 0)
        activity_layers = activity_layers[:, :, 0, :]
        activity_layers = activity_layers.new_tensor()
        y2 = self.cnn2(activity_layers[:, :, :], xr)

        y = self.fc(torch.cat([y1, y2], dim=0))
        return y
Пример #3
0
    def forward(self, x, xr):

        conv1 = self.Conv_classifer(x)
        # x = F.adaptive_avg_pool2d(x, (x.size()[1], 1))
        x1 = F.adaptive_max_pool2d(conv1, (conv1.size()[1], 1))
        x1 = x1.view(x1.size()[0], -1)

        conv2 = self.Conv_classifer2(conv1)
        x2 = F.adaptive_max_pool2d(conv2, (conv2.size()[1], 1))
        x2 = x2.view(x2.size()[0], -1)

        x = torch.cat((x1, x2, xr), 1)

        x = self.FC_classifier(x)

        return x
Пример #4
0
    def forward(self, x, xr):
        activity_layers, _ = self.bert_model(x)

        a1, e1, a2, e2, a3 = [], [], [], [], []

        for i in range(xr.size()[0]):
            e1start, e1end, e2start, e2end = xr[i, 0], xr[i, 1], xr[i,
                                                                    2], xr[i,
                                                                           3]

            a1.append(activity_layers[i, :e1start + 1, :])

            e1.append(activity_layers[i, e1start:e1end + 1, :])

            a2.append(activity_layers[i, e1end - 1:e2start + 1, :])

            e2.append(activity_layers[i, e2start:e2end + 1, :])

            a3.append(activity_layers[i, e2end:, :])

            if a2[-1].size()[0] == 0:
                a2[-1] = torch.FloatTensor([[0.] * (768 * 1)] * 3).cuda()

        a1 = torch.nn.utils.rnn.pad_sequence(a1)
        e1 = torch.nn.utils.rnn.pad_sequence(e1)
        a2 = torch.nn.utils.rnn.pad_sequence(a2)
        e2 = torch.nn.utils.rnn.pad_sequence(e2)
        a3 = torch.nn.utils.rnn.pad_sequence(a3)

        a1 = a1.permute(1, 2, 0)
        e1 = e1.permute(1, 2, 0)
        a2 = a2.permute(1, 2, 0)
        e2 = e2.permute(1, 2, 0)
        a3 = a3.permute(1, 2, 0)

        y1 = self.cnn1(a1, xr)
        y2 = self.cnn2(e1, xr)
        y3 = self.cnn3(a2, xr)
        y4 = self.cnn4(e2, xr)
        y5 = self.cnn5(a3, xr)

        y = self.fc(torch.cat([y1, y2, y3, y4, y5], dim=1))

        return y
Пример #5
0
    def forward(self, x, xr):
        # print(xr)

        activity_layers, _ = self.bert_model(x)
        #activity_layers, _, a = self.bert_model(x)
        if not isinstance(activity_layers, torch.Tensor):
            activity_layers = activity_layers[-1]

        # activity_layers=activity_layers.permute(0,2,1)
        # print(activity_layers.size())

        #activity_layers = a[-1]
        # print(out.size())
        a1, e1, a2, e2, a3 = [], [], [], [], []

        # activity_layers=torch.cat([a[-1],a[-2]],dim=2)
        for i in range(xr.size()[0]):
            e1start, e1end, e2start, e2end = xr[i, 0], xr[i, 1], xr[i,
                                                                    2], xr[i,
                                                                           3]

            # print(e1start,e1end,e2start,e2end)
            a1.append(activity_layers[i, :e1start + 1, :])

            e1.append(activity_layers[i, e1start:e1end + 1, :])

            a2.append(activity_layers[i, e1end - 1:e2start + 1, :])

            e2.append(activity_layers[i, e2start:e2end + 1, :])

            a3.append(activity_layers[i, e2end:, :])

            if a2[-1].size()[0] == 0:
                a2[-1] = torch.FloatTensor([[0.] * (768 * 1)] * 3).cuda()
                #a2[-1] = torch.FloatTensor([[0.] * (768 * 1)] * 3)
            '''
            print(a1[-1].size())
            print(e1[-1].size())
            print(a2[-1].size())
            print(e2[-1].size())
            print(a3[-1].size())'''
            # activity_layers[i,:,:e1]=activity_layers[i,:,0:e1]*0
            # activity_layers[i,:,e2:]=activity_layers[i,:,e2:]*0

            # print(activity_layers[i,:,e1:e2].size())

        a1 = torch.nn.utils.rnn.pad_sequence(a1)
        e1 = torch.nn.utils.rnn.pad_sequence(e1)
        a2 = torch.nn.utils.rnn.pad_sequence(a2)
        e2 = torch.nn.utils.rnn.pad_sequence(e2)
        a3 = torch.nn.utils.rnn.pad_sequence(a3)
        # e=torch.cat(e,dim=0)
        # print(e.size())

        # activity_layers=activity_layers.permute(0,2,1)
        a1 = a1.permute(1, 2, 0)
        e1 = e1.permute(1, 2, 0)
        a2 = a2.permute(1, 2, 0)
        e2 = e2.permute(1, 2, 0)
        a3 = a3.permute(1, 2, 0)

        # activity_layers=torch.cat([activity_layers[xr[i,0],xr[i,1]] for i in range(32)])

        # print(activity_layers.size())

        y1 = self.cnn1(a1, xr)
        y2 = self.cnn2(e1, xr)
        y3 = self.cnn3(a2, xr)
        y4 = self.cnn4(e2, xr)
        y5 = self.cnn5(a3, xr)

        y = self.fc(torch.cat([y1, y2, y3, y4, y5], dim=1))

        # y=self.cnn(activity_layers[:,:,:].detach(),out)
        return y