Пример #1
0
def launch_optimizer():
    args = parse_arguments()
    config = opt_utils.read_yaml(args.config_path)
    create_logger(config)
    opt_utils.create_dirs(config.get('directories', ['data', 'log', 'outputs']).values())
    opt_rest.init_service(config)
    opt_rest.app.run(debug=True,
                     host=args.host,
                     port=args.port)
Пример #2
0
def get_advice():
    global _last
    _last = request.args.get('last', default = True)

    logger.info('----------------------------------------------------------')
    logger.info('------------------------ ADVISOR -------------------------')
    logger.info(f'_last parameter variable set = {_last}')
    logger.info('------------------------ ADVISOR -------------------------')
    logger.info('----------------------------------------------------------')


    logger.info('----------------------------------------------------------')
    logger.info('------------------------ ADVISOR -------------------------')
    logger.info('Advisor get_advice() called')
    logger.info('------------------------ ADVISOR -------------------------')
    logger.info('----------------------------------------------------------')


    constants = opt_utils.read_yaml('data/constants.yaml')

    logger.info('----------------------------------------------------------')
    logger.info('-------------------------- YAML --------------------------')
    logger.info(f'Constants received: {constants}')
    logger.info('-------------------------- YAML --------------------------')
    logger.info('----------------------------------------------------------')


    logger.info('----------------------------------------------------------')
    logger.info('------------------------ ADVISOR -------------------------')
    logger.info('opt_advisor.init() called')
    logger.info('------------------------ ADVISOR -------------------------')
    logger.info('----------------------------------------------------------')


    # logger.info('----------------------------------------------------------')
    # logger.info('------------------------ ADVISOR -------------------------')
    # logger.info('opt_utils.readCSV(config.nn_filename)')
    # logger.info('------------------------ ADVISOR -------------------------')
    # logger.info('----------------------------------------------------------')

    # df = opt_utils.readCSV(config.nn_filename)

    # logger.info('----------------------------------------------------------')
    # logger.info('------------------------ ADVISOR -------------------------')
    # logger.info(f'df.shape[0] = {df.shape[0]}')
    # logger.info('------------------------ ADVISOR -------------------------')
    # logger.info('----------------------------------------------------------')

    # Tehát igazából abban sem vagyok biztos, hogy az Adviser API
    # hívásánaál be kellene e olvasnaom a CSV-t
    # lehet, hogy ezt megtehetné maga az advisor is

    # Szerintem az kéne, hogy az adviser nem kap semmilyen előszürést
    # hanem saját maga megvizsgálja, hogy van-e elég adat és ha van
    # akkor ad javaslatot, ha nincs akkor a józsinak megfelelően
    # visszadja, hogy False

    # opt_advisor_return = opt_advisor.run(config.nn_filename, last = _last)

    # Felmerült az a probléma, hogy néha nem kapunk elfogadható mintát
    # a Sample API-ban, ezért két változót átadok az Advisornak
    # akkor is ha ezek nem lesznek letárolva az adatok között
    opt_advisor_return = opt_advisor.run(config.nn_filename, vm_number, target_variable, last = _last, training_result = training_result)

    logger.info('----------------------------------------------------------')
    logger.info('------------------ opt_advisor_return --------------------')
    logger.info(f'opt_advisor_return with message: {opt_advisor_return}')
    logger.info('------------------ opt_advisor_return --------------------')
    logger.info('----------------------------------------------------------')

    logger.info('Get Advice recieved and processed.')

    return opt_advisor_return
Пример #3
0
def sample():

    constants = opt_utils.read_yaml('data/constants.yaml')

    logger.info('-------------------------- YAML --------------------------')
    logger.info(f'Constants received: {constants}')
    logger.info('-------------------------- YAML --------------------------')

    sample_yaml = request.stream.read()
    if not sample_yaml:
        raise RequestException(400, 'Empty POST data')
    else:
        sample = yaml.safe_load(sample_yaml)
        logger.info(f'New sample received: {sample}')

        logger.info('')
        logger.info('--------------------------------------------------------------')
        logger.info('                   Getting sample data...                     ')
        logger.info('--------------------------------------------------------------')

        input_metrics = [metric.get('value')
                         for metric in sample.get('sample').get('input_metrics')]


        target_metrics = [metric.get('value')
                          for metric in sample.get('sample').get('target_metrics')]


        global target_variable
        target_variable = target_metrics

        # Ez volt a jó megoldás, de Józsi valmiért a Polcy Keeperben a sample-n kívül küldi el a vm_number értéket
        # ezért ezt most átírom, csak egy próba ereéig
        global vm_number
        vm_number = sample.get('sample').get('vm_number')
        # vm_number = sample.get('vm_number')

        timestamp_col = [sample.get('sample').get('timestamp')]

        logger.info('')
        logger.info('Sample data is going to be stored in corresponding variables.')
        logger.info('--------------------------------------------------------------')
        logger.info(f'      input_metrics = {input_metrics}')
        logger.info(f'      target_metrics = {target_metrics}')
        logger.info(f'      vm_number = {vm_number}')
        logger.info(f'      timestamp_col = {timestamp_col}')
        logger.info(f'      target_variable = {target_variable}')
        # logger.info(f'      np.isnan(target_metrics[0]) = {np.isnan(target_metrics[0])}') # can cause error if array is empty or None
        logger.info('      ----------------------- sample -----------------------')
        logger.info(f'      {sample.get("sample")}')
        logger.info('      ----------------------- sample -----------------------')
        logger.info('')
        logger.info('--------------------------------------------------------------')


        # if None not in timestamp_col+input_metrics+target_metrics+[vm_number]: 
        # if( len(input_metrics) != 0 and len(target_metrics) != 0 and None not in timestamp_col+input_metrics+target_metrics+[vm_number]):
        if( len(input_metrics) == len(constants.get('input_metrics')) and len(target_metrics) != 0 and None not in timestamp_col+input_metrics+target_metrics+[vm_number] and np.isnan(target_metrics[0]) == False):

            logger.info('----------------------------------------------')
            logger.info('Sample accepted.')
            logger.info('----------------------------------------------')
            logger.info(f'      (constants.get("target_metrics") = {constants.get("target_metrics")}')
            logger.info(f'      len(target_metrics) = {len(target_metrics)}')
            logger.info(f'      len(constants.get("target_metrics")) = {len(constants.get("target_metrics"))}')
            logger.info('----------------------------------------------')

            # itt csak beolvassa a csv fájlt és csinál belőle egy data framet
            df = opt_utils.readCSV(config.nn_filename)

            logger.info('----------------------------------------------')
            logger.info('  df = opt_utils.readCSV(config.nn_filename)  ')
            logger.info(f'  pandas dataframe df.columns = {df.columns}')
            logger.info('----------------------------------------------')

            # Hozzáfűzöm az új adatokat a beolvasott csv-ből csinált data framehez
            tmp_df = df.append(pd.Series(timestamp_col+input_metrics+[vm_number]+target_metrics, index=df.columns ), ignore_index=True)

            # Elmenteni ezt a tmp_df pandas dataframet ugyan abba a csv fájlba
            tmp_df.to_csv(config.nn_filename, sep=',', encoding='utf-8', index=False)

            logger.info('----------------------------------------------')
            logger.info("tmp_df.to_csv(config.nn_filename, sep=',', encoding='utf-8', index=False)'")
            logger.info('Data has been added and saved to csv file')
            logger.info('----------------------------------------------')





            # ## ------------------------------------------------------------------------------------------------------
            # ## Start Training
            # ## ------------------------------------------------------------------------------------------------------

            # Ha egy megadott számnál hosszabb a dataframe akkor kezdje el a tanítást
            logger.info(f'tmp_df.shape = {tmp_df.shape}')
            logger.info(f'tmp_df.shape[0] = {tmp_df.shape[0]}')

            _min_training = constants.get('training_samples_required')
            #TODO:
            #Itt van egy kis diszkrepancia
            #Mivel a trainer maga végez egy kis adattisztitást, lehet, hogy itt 300-ra van állítva a df érték, de a trainer maga
            #dobja a null sorokat, ezért leheet, hogy ott kisebb lesz a df szám amikor elkezd tanulni (mivel itt a df 300 ott a null
            #dobása után mondjuk 243

            logger.info('----------------------------------------------')
            logger.info(f'Now we have rows = {tmp_df.shape[0]}')
            logger.info(f'Minimum number when training start = {constants.get("training_samples_required")}')
            logger.info(f'Minimum number when training start = {_min_training}')
            logger.info('----------------------------------------------')

            if( tmp_df.shape[0] >= _min_training ):

                # TODO:
                # Kivezetni hogy hány mintánként tanuljon
                # Comment: Nehogy már minden körben tanítsuk
                if( tmp_df.shape[0] % learning_round == 0 ):

                    logger.info('----------------------------------------------')
                    logger.info(f'Now we have rows = {tmp_df.shape[0]}')
                    logger.info('We have enough data to start learning')
                    logger.info('----------------------------------------------')

                    logger.info('----------------------------------------------')
                    logger.info('Learning NN and Linear Regression Phase')
                    logger.info('----------------------------------------------')

                    global training_result

                    logger.info('----------------------------------------------')
                    logger.info('opt_trainer.run(config.nn_filename)')
                    logger.info('----------------------------------------------')

                    training_result = opt_trainer.run(config.nn_filename, visualize = False)

                    logger.info(f'\n\nTraining result = {training_result}\n')

                    if( training_result[0] == 'No error' ):
                        global is_reportable
                        is_reportable = True

                    logger.info(f' is_reportable = {is_reportable}\n')

            else:
                logger.info('----------------------------------------------')
                logger.info('There is not enough data for start learning')
                logger.info('----------------------------------------------')

            logger.info('----------------------------------------------')
            logger.info('Samples received and processed.')
            logger.info('----------------------------------------------')

        else:
            logger.info('----------------------------------------------')
            logger.info('Sample ignored cause it contains empty value.')
            logger.info('----------------------------------------------')

    return jsonify('OK'), 200