Пример #1
0
 def test_lqr_unicycle(self):
     dynamics = UnicycleDynamics()
     integrator = EulerIntegrator(dynamics)
     N = 10
     h = 0.1
     x0 = np.array([1,1,0])
     # Q, R, Qf
     cost_gains = [np.diag([1,1,1]), np.diag([0.5, 1.0]), np.diag([2,2,2])]
     feedback_gains = np.empty((N, 2, 3))
     u = np.ravel(np.vstack((np.ones(N), np.hstack((np.ones(int(0.5*N)), -np.ones(int(N-0.5*N)))))).T)
     lqrUpdateGains(u, h, N, x0, cost_gains, integrator,feedback_gains)
Пример #2
0
 def setUp(self):
     self.dynamics = UnicycleDynamics()
     # Trajectory info
     self.dt = 0.05
     self.N = 20
     Q = self.dt*np.zeros(self.dynamics.n)
     R = 0.01*self.dt*np.eye(self.dynamics.m)
     Qf = 100*np.eye(self.dynamics.n)
     self.xd = np.array([1, 0.5, np.pi/2])
     self.cost = LQRCost(self.N, Q, R, Qf, self.xd)
     self.max_step = 0.5  # Allowed step for control
Пример #3
0
class TestUnicycleController(unittest.TestCase):
    def setUp(self):
        self.unicycle_dynamics = UnicycleDynamics()
        self.n = self.unicycle_dynamics.n
        self.m = self.unicycle_dynamics.m
        self.controller = UnicycleController(self.unicycle_dynamics)
        self.plot = True

    def testControl(self):
        #x0 = -1*np.ones(self.n)
        x0 = 2 * np.ones(self.n)
        x0[2] = 1
        max_iters = 1000
        iters = 0
        converged = False
        x = x0
        dt = 0.1
        t = 0
        xs = []
        ts = []
        while iters < max_iters:
            iters = iters + 1
            u = self.controller.control(t, x)
            xdot = self.unicycle_dynamics.xdot(t, x, u, np.zeros(self.n))
            x = x + xdot * dt
            t = t + dt
            xs.append(x)
            ts.append(t)
            error = np.linalg.norm(x[:2])
            if error < 1e-2:
                converged = True
                break
        xs = np.vstack(xs)
        ts = np.array(ts)
        if self.plot:
            plt.figure(1)
            plt.subplot(2, 1, 1)
            plt.plot(xs[:, 0], xs[:, 1], 'r')
            plt.plot(0, 0, 'b*')
            plt.subplot(2, 1, 2)
            theta = np.remainder(xs[:, 2], 2 * np.pi)
            inds_theta_greater = theta > np.pi
            inds_theta_smaller = theta < -np.pi
            theta[inds_theta_greater] = theta[inds_theta_greater] - 2 * np.pi
            theta[inds_theta_smaller] = theta[inds_theta_smaller] + 2 * np.pi
            plt.plot(ts, theta, 'r')
            theta_d = np.arctan2(-xs[:, 1], -xs[:, 0])
            plt.plot(ts, theta_d, 'b')
            plt.show(block=True)
        self.assertTrue(converged)
Пример #4
0
 def setUp(self):
     self.unicycle_dynamics = UnicycleDynamics()
     self.n = self.unicycle_dynamics.n
     self.m = self.unicycle_dynamics.m
     self.controller = UnicycleController(self.unicycle_dynamics)
     self.plot = True
Пример #5
0
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
from robust_gnn.plot_ellipse import plotEllipseArray, plotObstacleArray
from robust_gnn.gn_lqr_algo import gn_lqr_algo
from robust_gnn.obstacle_residual import Obstacle
from robust_gnn.ellipsoid import Ellipsoid
from optimal_control_framework.discrete_integrators import EulerIntegrator
from optimal_control_framework.dynamics import UnicycleDynamics

if __name__ == "__main__":
    dynamics = UnicycleDynamics()
    N = 10
    h = 0.1
    n = 3
    m = 2
    x0 = np.array([0, 0, 0])
    us0 = np.zeros((N, 2))
    Sigma0 = Ellipsoid(np.eye(n), np.array([0.1, 0.1, 0.01]))
    Sigmaw = Ellipsoid(np.eye(n), np.array([0, 0, 0]))
    integrator = EulerIntegrator(dynamics)
    # Q, R, Qf
    cost_gains = [
        np.diag([0, 0, 0]),
        np.diag([2, 0.05]), 200 * np.diag([2, 2, 1])
    ]
    # Obstacles
    obstacles = [Obstacle(np.array([0.5, 0.1]), 0.1)]
    projection_matrix = np.array([[1, 0, 0], [0, 1, 0]])
    ko_sqrt = 20
    # Desired