Пример #1
0
 def shed(self, time, scenario=None, evaluate=False):
     Pused = self.power(time, scenario=scenario)
     Pavail = self.power_available(time, scenario=scenario)
     if evaluate:
         Pused = value(Pused)
         Pavail = value(Pavail)
     return Pavail - Pused
Пример #2
0
 def shed(self, time, scenario=None, evaluate=False):
     Pused = self.power(time, scenario=scenario)
     Pavail = self.power_available(time, scenario=scenario)
     if evaluate:
         Pused = value(Pused)
         Pavail = value(Pavail)
     return Pavail - Pused
Пример #3
0
    def visualization(self, filename=None):
        '''power flow visualization'''
        if not do_plotting:
            return

        try:
            import networkx as nx
        except ImportError:
            logging.warning("Could'nt import networkx -- skipping plotting.")
            return

        buses, lines, t = self.buses, self.lines, self.times[0]

        G = nx.DiGraph()
        for bus in buses:
            Pinj = value(bus.Pgen(t)) - value(bus.Pload(t))
            G.add_node(bus.name, Pinj=Pinj)
        for line in lines:
            P = value(line.power(t))
            if P >= 0:
                G.add_edge(line.frombus, line.tobus, P=P, Plim=line.pmax)
            else:
                G.add_edge(line.tobus, line.frombus, P=-P, Plim=-line.pmin)

        pos = nx.spectral_layout(G)
        Pinj = [
            ndata['Pinj'] for bus, ndata in G.nodes(data=True)
            if 'Pinj' in ndata
        ]
        nx.draw(G,
                node_color=Pinj,
                pos=pos,
                node_size=1500,
                alpha=.7,
                cmap=plot.cm.get_cmap('RdYlBu'),
                fontsize=30)

        # TODO: get colorbar label working again
        # ax = plot.gca()
        # cb = plot.colorbar(ax=ax, shrink=.8)
        # cb.set_label('injected power [MW]', fontsize=15)

        Plines = [
            edata['P'] for _, t, edata in G.edges(data=True) if 'P' in edata
        ]
        atLimLines = [(f, t) for f, t, edata in G.edges(data=True)
                      if within(edata['P'], val=edata['Plim'], eps=1e-3)]
        nx.draw_networkx_edges(G,
                               edge_color='0.6',
                               pos=pos,
                               width=Plines,
                               alpha=0.5)
        nx.draw_networkx_edges(G,
                               edgelist=atLimLines,
                               edge_color='r',
                               pos=pos,
                               width=Plines,
                               alpha=0.5)
        self.savevisualization(full_filename('powerflow.png'))
Пример #4
0
 def output_incremental(self, input_var):
     input_val = value(input_var)
     if self.is_pwl:
         for A, B in pairwise(self.bid_points):
             if A[0] <= input_val <= B[0]:
                 return get_line_slope(A, B)
     else:
         return polynomial_incremental_value(self.polynomial, value(input_var))
Пример #5
0
 def get_values(self, items, method='power', time=None, evaluate=False):
     '''Get the attributes of all objects of a certain kind at a given time.'''
     if time:
         if evaluate:
             out = [value(getattr(
                 obj, method)(time, evaluate=True)) for obj in items]
         else:
             out = [value(getattr(obj, method)(time)) for obj in items]
     else:
         out = [value(getattr(obj, method)) for obj in items]
     return out
Пример #6
0
    def gen_time_df(self, method, scenario, non_overlap=True, evaluate=False,
                    generators=None):
        if generators is None:
            generators = self.generators

        if evaluate:
            getval = lambda gen, t: value(
                getattr(gen, method)(t, scenario, evaluate=True))
        else:
            getval = lambda gen, t: value(getattr(gen, method)(t, scenario))

        times = self.times_non_overlap if non_overlap else self.times
        return gen_time_dataframe(generators, times,
                                  [[getval(gen, t) for t in times] for gen in generators])
Пример #7
0
 def cost_shutdown(self, time, scenario=None, evaluate=False):
     if self.shutdowncost == 0 or not self.commitment_problem:
         return 0
     else:
         c = self.get_variable(
             'shutdowncost', time, scenario=scenario, indexed=True)
         return c if not evaluate else value(c)
Пример #8
0
 def cost_shutdown(self, time, scenario=None, evaluate=False):
     if self.shutdowncost == 0 or not self.commitment_problem:
         return 0
     else:
         c = self.get_variable(
             'shutdowncost', time, scenario=scenario, indexed=True)
         return c if not evaluate else value(c)
Пример #9
0
 def _get_problem_info(self):
     self.solve_time = self.power_system.solution_time
     self.objective = float(value(self.power_system.objective))
     try:
         self.mipgap = self.power_system.mipgap
     except AttributeError:
         self.mipgap = None
Пример #10
0
 def power(self, time, scenario=None, evaluate=False):
     if self.shedding_mode:
         power = self.get_variable("power", time, scenario=scenario, indexed=True)
         if evaluate:
             power = value(power)
         return power
     else:
         return self.get_scheduled_output(time)
Пример #11
0
 def power(self, time, scenario=None, evaluate=False):
     if self.shedding_mode:
         power = self.get_variable('power', time,
                                   scenario=scenario, indexed=True)
         if evaluate:
             power = value(power)
         return power
     else:
         return self.get_scheduled_output(time)
Пример #12
0
def get_line_value(A, B, x):
    '''
    take a pair of points and make a linear function
    get the value of the function at x
    see http://bit.ly/Pd4z4l
    '''
    xA, yA = A
    slope = get_line_slope(A, B)
    return slope * (value(x) - xA) + yA
Пример #13
0
    def visualization(self, filename=None):
        '''power flow visualization'''
        if not do_plotting:
            return

        try:
            import networkx as nx
        except ImportError:
            logging.warning("Could'nt import networkx -- skipping plotting.")
            return

        buses, lines, t = self.buses, self.lines, self.times[0]

        G = nx.DiGraph()
        for bus in buses:
            Pinj = value(bus.Pgen(t)) - value(bus.Pload(t))
            G.add_node(bus.name, Pinj=Pinj)
        for line in lines:
            P = value(line.power(t))
            if P >= 0:
                G.add_edge(line.frombus, line.tobus, P=P, Plim=line.pmax)
            else:
                G.add_edge(line.tobus, line.frombus, P=-P, Plim=-line.pmin)

        pos = nx.spectral_layout(G)
        Pinj = [ndata['Pinj'] for bus, ndata in G.nodes(data=True)
                if 'Pinj' in ndata]
        nx.draw(G, node_color=Pinj, pos=pos, node_size=1500,
                alpha=.7, cmap=plot.cm.get_cmap('RdYlBu'), fontsize=30)

        # TODO: get colorbar label working again
        # ax = plot.gca()
        # cb = plot.colorbar(ax=ax, shrink=.8)
        # cb.set_label('injected power [MW]', fontsize=15)

        Plines = [edata['P'] for _, t, edata in G.edges(data=True)
                  if 'P' in edata]
        atLimLines = [(f, t) for f, t, edata in G.edges(
            data=True) if within(edata['P'], val=edata['Plim'], eps=1e-3)]
        nx.draw_networkx_edges(
            G, edge_color='0.6', pos=pos, width=Plines, alpha=0.5)
        nx.draw_networkx_edges(G, edgelist=atLimLines, edge_color='r',
                               pos=pos, width=Plines, alpha=0.5)
        self.savevisualization(full_filename('powerflow.png'))
Пример #14
0
    def output(self, time=None, scenario=None, evaluate=False):
        status = self.status_variable(time, scenario)
        power = self.input_variable(time, scenario)
        if evaluate:
            status = value(status)
            power = value(power)

        if self.is_linear:
            out = self.polynomial[1] * power
        else:
            out = self.get_variable('cost',
                                    time=time, scenario=scenario, indexed=True)
            if evaluate:
                out = value(out)

        if self.constant_term != 0:
            out += status * self.constant_term

        return out
Пример #15
0
 def stg_panel(self, method, 
     generators=None,
     no_overlap=True,
     evaluate=False):
     if generators is None:
         generators = self.generators
         
     times = self.times_non_overlap if no_overlap else self.times
     if evaluate:
         getval = lambda s, gen, t: value(
             getattr(gen, method)(t, s, evaluate=True))
     else:
         getval = lambda s, gen, t: value(getattr(gen, method)(t, s))
     return pd.Panel(
         [[[getval(s, gen, t) for gen in generators]
             for t in times] for s in self.scenarios],
         items=[s for s in self.scenarios],
         major_axis=times.strings.index,
         minor_axis=[str(g) for g in generators])
Пример #16
0
    def output_true(self, input_var, force_linear=False):
        '''true output value of bid'''
        input_val = value(input_var)

        if (self.is_pwl or force_linear) and not self.is_linear:
            if not self.is_pwl and self.bid_points is None:
                # construct the bid points
                bid_pt_outputs = map(lambda pt: polynomial_value(
                    self.polynomial, pt), self.discrete_input_points)
                self.bid_points = zip(
                    self.discrete_input_points, bid_pt_outputs)

            for A, B in pairwise(self.bid_points.values.tolist()):
                if A[0] <= input_val <= B[0]:
                    return get_line_value(A, B, input_val) + self.constant_term
        else:
            return polynomial_value(self.polynomial, input_val)
Пример #17
0
    def visualization(self, show_cost_also=False):
        ''' economic dispatch visualization of linearized incremental cost'''
        if not do_plotting:
            return
        t = self.times[0]
        price = self.lmps[str(t)][0]
        generators = self.generators
        loads = self.loads

        plotted_gens, names_gens, plotted_loads, names_loads = [], [], [], []
        minGen = min(getattrL(generators, 'pmin'))
        maxGen = max(getattrL(generators, 'pmax'))

        # save a plot of the price space - illustrating equal IC
        ax = plot.axes()
        for gen in generators:
            if gen.status(t):
                in_range, out_range = gen.bids.output_incremental_range()
                if gen.bids.is_pwl:
                    line, = plot.step(
                        in_range, out_range, where='pre', linestyle='-')
                else:
                    line, = plot.plot(in_range, out_range, linestyle='-', )
                plotted_gens.append(line)
                P = value(gen.power(t))
                IC = gen.incrementalcost(t)
                plot.plot(P, IC, '.', c=line.get_color(
                ), markersize=8, linewidth=2, alpha=0.7)
                names_gens.append(gen.name)
        if price is not None:
            grayColor = '.75'
            plot.plot([minGen, maxGen], [price, price], '--k', color=grayColor)
            plot.text(maxGen, price, '{p:0.2f} $/MWh'.format(
                p=price), color=grayColor, horizontalalignment='right')

        plot.xlabel('P [MWh]')
        if plotted_loads:
            plot.ylabel('Marginal Cost-Benifit [$/MWh]')
        else:
            plot.ylabel('Marginal Cost [$/MWh]')
        prettify_axes(ax)

        # plot.xlim(xmin=0,xmax=)
        ymin, _ = plot.ylim()
        if ymin < 0:
            plot.ylim(ymin=0)

        legendGens = plot.legend(plotted_gens, names_gens, fancybox=True,
                                 title='Generators:', loc='best')
        if plotted_loads:
            plot.legend(plotted_loads, names_loads,
                        fancybox=True, title='Loads:', loc='best')
            # add first legend to the axes manually bcs multiple legends get overwritten                        
            plot.gca().add_artist(legendGens)  

        self.savevisualization(filename=full_filename('dispatch.png'))

        if show_cost_also:
            # show a plot of the cost space, illustrating the linearization
            plot.figure()
            gensPlotted_price = plotted_gens
            plotted_gens, names_gens, plotted_loads, names_loads = [
            ], [], [], []
            for g, gen in enumerate(generators):
                if gen.status(t):
                    plotted_gens.append(gen.cost_model.plot(
                        P=value(gen.power(t)), 
                        linestyle='-', 
                        color=gensPlotted_price[g].get_color()
                        ))
                    names_gens.append(gen.name)
            for load in loads:
                if load.kind == 'bidding':
                    plotted_loads.append(load.bid(
                        t).plot(P=value(load.power(t)), linestyle=':'))
                    names_loads.append(load.name)
            plot.xlabel('P [MWh]')
            if plotted_loads:
                plot.ylabel('Cost-Benifit [$/h]')
            else:
                plot.ylabel('Cost [$/h]')
            legendGens = plot.legend(plotted_gens, names_gens, fancybox=True,
                                     title='Generators:', loc='best')
            if plotted_loads:
                plot.legend(plotted_loads, names_loads,
                            fancybox=True, title='Loads:', loc='best')
                plot.gca().add_artist(legendGens)  # add first legend to the axes manually bcs multiple legends get overwritten

            self.savevisualization(filename=full_filename('dispatch-cost.png'))
Пример #18
0
 def getstatus(self, tend, times, status):
     return dict(
         status=value(self.status(tend)),
         power=value(self.power(tend)),
         hoursinstatus=self.gethrsinstatus(times, status))
Пример #19
0
 def incrementalcost(self, time, scenario=None):
     '''change in cost with change in power at time (based on exact bid polynomial).'''
     return self.bids.output_incremental(self.power(time, scenario)) if value(self.status(time, scenario)) else None
Пример #20
0
 def getstatus(self, tend, times, status):
     return dict(status=value(self.status(tend)),
                 power=value(self.power(tend)),
                 hoursinstatus=self.gethrsinstatus(times, status))
Пример #21
0
 def truecost(self, time, scenario=None):
     '''exact cost of real power production at time (based on exact bid polynomial).'''
     return value(self.status(time, scenario)) * self.bids.output_true(
         self.power(time, scenario))
Пример #22
0
 def Pload(self, t, evaluate=False):
     if evaluate:
         return sum(value(ld.power(t)) for ld in self.loads)
     else:
         return sum(ld.power(t) for ld in self.loads)
Пример #23
0
 def truecost(self, time, scenario=None):
     '''exact cost of real power production at time (based on exact bid polynomial).'''
     return value(self.status(time, scenario)) * self.bids.output_true(self.power(time, scenario))
Пример #24
0
 def Pgen(self, t, evaluate=False):
     if evaluate:
         return sum(value(gen.power(t)) for gen in self.generators)
     else:
         return sum(gen.power(t) for gen in self.generators)
Пример #25
0
 def incrementalcost(self, time, scenario=None):
     '''change in cost with change in power at time (based on exact bid polynomial).'''
     return self.bids.output_incremental(self.power(
         time, scenario)) if value(self.status(time, scenario)) else None