Пример #1
0
def fmin_tnc(func, x0, fprime=None, args=(), approx_grad=0,
             bounds=None, epsilon=1e-8, scale=None, offset=None,
             messages=MSG_ALL, maxCGit=-1, maxfun=None, eta=-1,
             stepmx=0, accuracy=0, fmin=0, ftol=-1, xtol=-1, pgtol=-1,
             rescale=-1, disp=None):
    """
    Minimize a function with variables subject to bounds, using
    gradient information in a truncated Newton algorithm. This
    method wraps a C implementation of the algorithm.

    Parameters
    ----------
    func : callable ``func(x, *args)``
        Function to minimize.  Must do one of
        1. Return f and g, where f is
        the value of the function and g its gradient (a list of
        floats).
        2. Return the function value but supply gradient function
        seperately as fprime
        3. Return the function value and set approx_grad=True.
        If the function returns None, the minimization
        is aborted.
    x0 : list of floats
        Initial estimate of minimum.
    fprime : callable ``fprime(x, *args)``
        Gradient of func. If None, then either func must return the
        function value and the gradient (``f,g = func(x, *args)``)
        or approx_grad must be True.
    args : tuple
        Arguments to pass to function.
    approx_grad : bool
        If true, approximate the gradient numerically.
    bounds : list
        (min, max) pairs for each element in x0, defining the
        bounds on that parameter. Use None or +/-inf for one of
        min or max when there is no bound in that direction.
    epsilon: float
        Used if approx_grad is True. The stepsize in a finite
        difference approximation for fprime.
    scale : list of floats
        Scaling factors to apply to each variable.  If None, the
        factors are up-low for interval bounded variables and
        1+|x] fo the others.  Defaults to None
    offset : float
        Value to substract from each variable.  If None, the
        offsets are (up+low)/2 for interval bounded variables
        and x for the others.
    messages :
        Bit mask used to select messages display during
        minimization values defined in the MSGS dict.  Defaults to
        MGS_ALL.
    disp : int
        Integer interface to messages.  0 = no message, 5 = all messages
    maxCGit : int
        Maximum number of hessian*vector evaluations per main
        iteration.  If maxCGit == 0, the direction chosen is
        -gradient if maxCGit < 0, maxCGit is set to
        max(1,min(50,n/2)).  Defaults to -1.
    maxfun : int
        Maximum number of function evaluation.  if None, maxfun is
        set to max(100, 10*len(x0)).  Defaults to None.
    eta : float
        Severity of the line search. if < 0 or > 1, set to 0.25.
        Defaults to -1.
    stepmx : float
        Maximum step for the line search.  May be increased during
        call.  If too small, it will be set to 10.0.  Defaults to 0.
    accuracy : float
        Relative precision for finite difference calculations.  If
        <= machine_precision, set to sqrt(machine_precision).
        Defaults to 0.
    fmin : float
        Minimum function value estimate.  Defaults to 0.
    ftol : float
        Precision goal for the value of f in the stoping criterion.
        If ftol < 0.0, ftol is set to 0.0 defaults to -1.
    xtol : float
        Precision goal for the value of x in the stopping
        criterion (after applying x scaling factors).  If xtol <
        0.0, xtol is set to sqrt(machine_precision).  Defaults to
        -1.
    pgtol : float
        Precision goal for the value of the projected gradient in
        the stopping criterion (after applying x scaling factors).
        If pgtol < 0.0, pgtol is set to 1e-2 * sqrt(accuracy).
        Setting it to 0.0 is not recommended.  Defaults to -1.
    rescale : float
        Scaling factor (in log10) used to trigger f value
        rescaling.  If 0, rescale at each iteration.  If a large
        value, never rescale.  If < 0, rescale is set to 1.3.

    Returns
    -------
    x : list of floats
        The solution.
    nfeval : int
        The number of function evaluations.
    rc : int
        Return code as defined in the RCSTRINGS dict.


    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'TNC' `method` in particular.

    Notes
    -----
    The underlying algorithm is truncated Newton, also called
    Newton Conjugate-Gradient. This method differs from
    scipy.optimize.fmin_ncg in that

    1. It wraps a C implementation of the algorithm
    2. It allows each variable to be given an upper and lower bound.


    The algorithm incoporates the bound constraints by determining
    the descent direction as in an unconstrained truncated Newton,
    but never taking a step-size large enough to leave the space
    of feasible x's. The algorithm keeps track of a set of
    currently active constraints, and ignores them when computing
    the minimum allowable step size. (The x's associated with the
    active constraint are kept fixed.) If the maximum allowable
    step size is zero then a new constraint is added. At the end
    of each iteration one of the constraints may be deemed no
    longer active and removed. A constraint is considered
    no longer active is if it is currently active
    but the gradient for that variable points inward from the
    constraint. The specific constraint removed is the one
    associated with the variable of largest index whose
    constraint is no longer active.


    References
    ----------
    Wright S., Nocedal J. (2006), 'Numerical Optimization'

    Nash S.G. (1984), "Newton-Type Minimization Via the Lanczos Method",
    SIAM Journal of Numerical Analysis 21, pp. 770-778


    """
    # handle fprime/approx_grad
    if approx_grad:
        fun = func
        jac = None
    elif fprime is None:
        fun = MemoizeJac(func)
        jac = fun.derivative
    else:
        fun = func
        jac = fprime

    if disp is not None: # disp takes precedence over messages
        mesg_num = disp
    else:
        mesg_num = {0:MSG_NONE, 1:MSG_ITER, 2:MSG_INFO, 3:MSG_VERS,
                    4:MSG_EXIT, 5:MSG_ALL}.get(messages, MSG_ALL)
    # build options
    opts = {'eps'  : epsilon,
            'scale': scale,
            'offset': offset,
            'mesg_num': mesg_num,
            'maxCGit': maxCGit,
            'maxfev': maxfun,
            'eta': eta,
            'stepmx': stepmx,
            'accuracy': accuracy,
            'minfev': fmin,
            'ftol': ftol,
            'xtol': xtol,
            'pgtol': pgtol,
            'rescale': rescale,
            'disp': False}

    res = _minimize_tnc(fun, x0, args, jac, bounds, options=opts)

    return res['x'], res['nfev'], res['status']
Пример #2
0
def minimize(fun, x0, args=(), method='BFGS', jac=None, hess=None,
             hessp=None, bounds=None, constraints=(), tol=None,
             callback=None, options=None):
    """
    Minimization of scalar function of one or more variables.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    fun : callable
        Objective function.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to the objective function and its
        derivatives (Jacobian, Hessian).
    method : str, optional
        Type of solver.  Should be one of

            - 'Nelder-Mead'
            - 'Powell'
            - 'CG'
            - 'BFGS'
            - 'Newton-CG'
            - 'Anneal'
            - 'L-BFGS-B'
            - 'TNC'
            - 'COBYLA'
            - 'SLSQP'

    jac : bool or callable, optional
        Jacobian of objective function. Only for CG, BFGS, Newton-CG.
        If `jac` is a Boolean and is True, `fun` is assumed to return the
        value of Jacobian along with the objective function. If False, the
        Jacobian will be estimated numerically.
        `jac` can also be a callable returning the Jacobian of the
        objective. In this case, it must accept the same arguments as `fun`.
    hess, hessp : callable, optional
        Hessian of objective function or Hessian of objective function
        times an arbitrary vector p.  Only for Newton-CG.
        Only one of `hessp` or `hess` needs to be given.  If `hess` is
        provided, then `hessp` will be ignored.  If neither `hess` nor
        `hessp` is provided, then the hessian product will be approximated
        using finite differences on `jac`. `hessp` must compute the Hessian
        times an arbitrary vector.
    bounds : sequence, optional
        Bounds for variables (only for L-BFGS-B, TNC, COBYLA and SLSQP).
        ``(min, max)`` pairs for each element in ``x``, defining
        the bounds on that parameter. Use None for one of ``min`` or
        ``max`` when there is no bound in that direction.
    constraints : dict or sequence of dict, optional
        Constraints definition (only for COBYLA and SLSQP).
        Each constraint is defined in a dictionary with fields:
            type: str
                Constraint type: 'eq' for equality, 'ineq' for inequality.
            fun: callable
                The function defining the constraint.
            jac: callable, optional
                The Jacobian of `fun` (only for SLSQP).
            args: sequence, optional
                Extra arguments to be passed to the function and Jacobian.
        Equality constraint means that the constraint function result is to
        be zero whereas inequality means that it is to be non-negative.
        Note that COBYLA only supports inequality constraints.
    tol : float, optional
        Tolerance for termination. For detailed control, use solver-specific
        options.
    options : dict, optional
        A dictionary of solver options. All methods accept the following
        generic options:
            maxiter : int
                Maximum number of iterations to perform.
            disp : bool
                Set to True to print convergence messages.
        For method-specific options, see `show_options('minimize', method)`.
    callback : callable, optional
        Called after each iteration, as ``callback(xk)``, where ``xk`` is the
        current parameter vector.

    Returns
    -------
    res : Result
        The optimization result represented as a ``Result`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the optimizer exited successfully and
        ``message`` which describes the cause of the termination. See
        `Result` for a description of other attributes.


    See also
    --------
    minimize_scalar: Interface to minimization algorithms for scalar
        univariate functions.

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *BFGS*.

    **Unconstrained minimization**

    Method *Nelder-Mead* uses the Simplex algorithm [1]_, [2]_. This
    algorithm has been successful in many applications but other algorithms
    using the first and/or second derivatives information might be preferred
    for their better performances and robustness in general.

    Method *Powell* is a modification of Powell's method [3]_, [4]_ which
    is a conjugate direction method. It performs sequential one-dimensional
    minimizations along each vector of the directions set (`direc` field in
    `options` and `info`), which is updated at each iteration of the main
    minimization loop. The function need not be differentiable, and no
    derivatives are taken.

    Method *CG* uses a nonlinear conjugate gradient algorithm by Polak and
    Ribiere, a variant of the Fletcher-Reeves method described in [5]_ pp.
    120-122. Only the first derivatives are used.

    Method *BFGS* uses the quasi-Newton method of Broyden, Fletcher,
    Goldfarb, and Shanno (BFGS) [5]_ pp. 136. It uses the first derivatives
    only. BFGS has proven good performance even for non-smooth
    optimizations

    Method *Newton-CG* uses a Newton-CG algorithm [5]_ pp. 168 (also known
    as the truncated Newton method). It uses a CG method to the compute the
    search direction. See also *TNC* method for a box-constrained
    minimization with a similar algorithm.

    Method *Anneal* uses simulated annealing, which is a probabilistic
    metaheuristic algorithm for global optimization. It uses no derivative
    information from the function being optimized.

    **Constrained minimization**

    Method *L-BFGS-B* uses the L-BFGS-B algorithm [6]_, [7]_ for bound
    constrained minimization.

    Method *TNC* uses a truncated Newton algorithm [5]_, [8]_ to minimize a
    function with variables subject to bounds. This algorithm is uses
    gradient information; it is also called Newton Conjugate-Gradient. It
    differs from the *Newton-CG* method described above as it wraps a C
    implementation and allows each variable to be given upper and lower
    bounds.

    Method *COBYLA* uses the Constrained Optimization BY Linear
    Approximation (COBYLA) method [9]_, [10]_, [11]_. The algorithm is
    based on linear approximations to the objective function and each
    constraint. The method wraps a FORTRAN implementation of the algorithm.

    Method *SLSQP* uses Sequential Least SQuares Programming to minimize a
    function of several variables with any combination of bounds, equality
    and inequality constraints. The method wraps the SLSQP Optimization
    subroutine originally implemented by Dieter Kraft [12]_.

    References
    ----------
    .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function
        Minimization. The Computer Journal 7: 308-13.
    .. [2] Wright M H. 1996. Direct search methods: Once scorned, now
        respectable, in Numerical Analysis 1995: Proceedings of the 1995
        Dundee Biennial Conference in Numerical Analysis (Eds. D F
        Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK.
        191-208.
    .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of
       a function of several variables without calculating derivatives. The
       Computer Journal 7: 155-162.
    .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery.
       Numerical Recipes (any edition), Cambridge University Press.
    .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization.
       Springer New York.
    .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory
       Algorithm for Bound Constrained Optimization. SIAM Journal on
       Scientific and Statistical Computing 16 (5): 1190-1208.
    .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm
       778: L-BFGS-B, FORTRAN routines for large scale bound constrained
       optimization. ACM Transactions on Mathematical Software 23 (4):
       550-560.
    .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method.
       1984. SIAM Journal of Numerical Analysis 21: 770-778.
    .. [9] Powell, M J D. A direct search optimization method that models
       the objective and constraint functions by linear interpolation.
       1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez
       and J-P Hennart, Kluwer Academic (Dordrecht), 51-67.
    .. [10] Powell M J D. Direct search algorithms for optimization
       calculations. 1998. Acta Numerica 7: 287-336.
    .. [11] Powell M J D. A view of algorithms for optimization without
       derivatives. 2007.Cambridge University Technical Report DAMTP
       2007/NA03
    .. [12] Kraft, D. A software package for sequential quadratic
       programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace
       Center -- Institute for Flight Mechanics, Koln, Germany.

    Examples
    --------
    Let us consider the problem of minimizing the Rosenbrock function. This
    function (and its respective derivatives) is implemented in `rosen`
    (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`.

    >>> from scipy.optimize import minimize, rosen, rosen_der

    A simple application of the *Nelder-Mead* method is:

    >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
    >>> res = minimize(rosen, x0, method='Nelder-Mead')
    >>> res.x
    [ 1.  1.  1.  1.  1.]

    Now using the *BFGS* algorithm, using the first derivative and a few
    options:

    >>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
    ...                options={'gtol': 1e-6, 'disp': True})
    Optimization terminated successfully.
             Current function value: 0.000000
             Iterations: 52
             Function evaluations: 64
             Gradient evaluations: 64
    >>> res.x
    [ 1.  1.  1.  1.  1.]
    >>> print res.message
    Optimization terminated successfully.
    >>> res.hess
    [[ 0.00749589  0.01255155  0.02396251  0.04750988  0.09495377]
     [ 0.01255155  0.02510441  0.04794055  0.09502834  0.18996269]
     [ 0.02396251  0.04794055  0.09631614  0.19092151  0.38165151]
     [ 0.04750988  0.09502834  0.19092151  0.38341252  0.7664427 ]
     [ 0.09495377  0.18996269  0.38165151  0.7664427   1.53713523]]


    Next, consider a minimization problem with several constraints (namely
    Example 16.4 from [5]_). The objective function is:

    >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2

    There are three constraints defined as:

    >>> cons = ({'type': 'ineq', 'fun': lambda x:  x[0] - 2 * x[1] + 2},
    ...         {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
    ...         {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})

    And variables must be positive, hence the following bounds:

    >>> bnds = ((0, None), (0, None))

    The optimization problem is solved using the SLSQP method as:

    >>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,
    ...                constraints=cons)

    It should converge to the theoretical solution (1.4 ,1.7).

    """
    meth = method.lower()
    if options is None:
        options = {}
    # check if optional parameters are supported by the selected method
    # - jac
    if meth in ['nelder-mead', 'powell', 'anneal', 'cobyla'] and bool(jac):
        warn('Method %s does not use gradient information (jac).' % method,
             RuntimeWarning)
    # - hess
    if meth != 'newton-cg' and hess is not None:
        warn('Method %s does not use Hessian information (hess).' % method,
             RuntimeWarning)
    # - constraints or bounds
    if (meth in ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg'] and
        (bounds is not None or any(constraints))):
        warn('Method %s cannot handle constraints nor bounds.' % method,
             RuntimeWarning)
    if meth in ['l-bfgs-b', 'tnc'] and any(constraints):
        warn('Method %s cannot handle constraints.' % method,
             RuntimeWarning)
    if meth is 'cobyla' and bounds is not None:
        warn('Method %s cannot handle bounds.' % method,
             RuntimeWarning)
    # - callback
    if (meth in ['anneal', 'tnc', 'cobyla', 'slsqp'] and
        callback is not None):
        warn('Method %s does not support callback.' % method,
             RuntimeWarning)
    # - return_all
    if (meth in ['anneal', 'l-bfgs-b', 'tnc', 'cobyla', 'slsqp'] and
        options.get('return_all', False)):
        warn('Method %s does not support the return_all option.' % method,
             RuntimeWarning)

    # fun also returns the jacobian
    if not callable(jac):
        if bool(jac):
            fun = MemoizeJac(fun)
            jac = fun.derivative
        else:
            jac = None

    # set default tolerances
    if tol is not None:
        options = dict(options)
        if meth in ['nelder-mead', 'newton-cg', 'powell', 'tnc']:
            options.setdefault('xtol', tol)
        if meth in ['nelder-mead', 'powell', 'anneal', 'l-bfgs-b', 'tnc',
                    'slsqp']:
            options.setdefault('ftol', tol)
        if meth in ['bfgs', 'cg', 'l-bfgs-b', 'tnc']:
            options.setdefault('gtol', tol)
        if meth in ['cobyla']:
            options.setdefault('tol', tol)

    if meth == 'nelder-mead':
        return _minimize_neldermead(fun, x0, args, callback, **options)
    elif meth == 'powell':
        return _minimize_powell(fun, x0, args, callback, **options)
    elif meth == 'cg':
        return _minimize_cg(fun, x0, args, jac, callback, **options)
    elif meth == 'bfgs':
        return _minimize_bfgs(fun, x0, args, jac, callback, **options)
    elif meth == 'newton-cg':
        return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,
                                  **options)
    elif meth == 'anneal':
        return _minimize_anneal(fun, x0, args, **options)
    elif meth == 'l-bfgs-b':
        return _minimize_lbfgsb(fun, x0, args, jac, bounds, callback=callback,
                                **options)
    elif meth == 'tnc':
        return _minimize_tnc(fun, x0, args, jac, bounds, **options)
    elif meth == 'cobyla':
        return _minimize_cobyla(fun, x0, args, constraints, **options)
    elif meth == 'slsqp':
        return _minimize_slsqp(fun, x0, args, jac, bounds,
                               constraints, **options)
    else:
        raise ValueError('Unknown solver %s' % method)
Пример #3
0
def fmin_l_bfgs_b(func,
                  x0,
                  fprime=None,
                  args=(),
                  approx_grad=0,
                  bounds=None,
                  m=10,
                  factr=1e7,
                  pgtol=1e-5,
                  epsilon=1e-8,
                  iprint=-1,
                  maxfun=15000,
                  maxiter=15000,
                  disp=None,
                  callback=None):
    """
    Minimize a function func using the L-BFGS-B algorithm.

    Parameters
    ----------
    func : callable f(x,*args)
        Function to minimise.
    x0 : ndarray
        Initial guess.
    fprime : callable fprime(x,*args)
        The gradient of `func`.  If None, then `func` returns the function
        value and the gradient (``f, g = func(x, *args)``), unless
        `approx_grad` is True in which case `func` returns only ``f``.
    args : sequence
        Arguments to pass to `func` and `fprime`.
    approx_grad : bool
        Whether to approximate the gradient numerically (in which case
        `func` returns only the function value).
    bounds : list
        ``(min, max)`` pairs for each element in ``x``, defining
        the bounds on that parameter. Use None for one of ``min`` or
        ``max`` when there is no bound in that direction.
    m : int
        The maximum number of variable metric corrections
        used to define the limited memory matrix. (The limited memory BFGS
        method does not store the full hessian but uses this many terms in an
        approximation to it.)
    factr : float
        The iteration stops when
        ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``,
        where ``eps`` is the machine precision, which is automatically
        generated by the code. Typical values for `factr` are: 1e12 for
        low accuracy; 1e7 for moderate accuracy; 10.0 for extremely
        high accuracy.
    pgtol : float
        The iteration will stop when
        ``max{|proj g_i | i = 1, ..., n} <= pgtol``
        where ``pg_i`` is the i-th component of the projected gradient.
    epsilon : float
        Step size used when `approx_grad` is True, for numerically
        calculating the gradient
    iprint : int
        Controls the frequency of output. ``iprint < 0`` means no output;
        ``iprint == 0`` means write messages to stdout; ``iprint > 1`` in
        addition means write logging information to a file named
        ``iterate.dat`` in the current working directory.
    disp : int, optional
        If zero, then no output.  If a positive number, then this over-rides
        `iprint` (i.e., `iprint` gets the value of `disp`).
    maxfun : int
        Maximum number of function evaluations.
    maxiter : int
        Maximum number of iterations.
    callback : callable, optional
        Called after each iteration, as ``callback(xk)``, where ``xk`` is the
        current parameter vector.

    Returns
    -------
    x : array_like
        Estimated position of the minimum.
    f : float
        Value of `func` at the minimum.
    d : dict
        Information dictionary.

        * d['warnflag'] is

          - 0 if converged,
          - 1 if too many function evaluations or too many iterations,
          - 2 if stopped for another reason, given in d['task']

        * d['grad'] is the gradient at the minimum (should be 0 ish)
        * d['funcalls'] is the number of function calls made.
        * d['nit'] is the number of iterations.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'L-BFGS-B' `method` in particular.

    Notes
    -----
    License of L-BFGS-B (Fortran code):

    The version included here (in fortran code) is 3.0 (released April 25, 2011).
    It was written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal
    <*****@*****.**>. It carries the following condition for use:

    This software is freely available, but we expect that all publications
    describing work using this software, or all commercial products using it,
    quote at least one of the references given below. This software is released
    under the BSD License.

    References
    ----------
    * R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
      Constrained Optimization, (1995), SIAM Journal on Scientific and
      Statistical Computing, 16, 5, pp. 1190-1208.
    * C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B,
      FORTRAN routines for large scale bound constrained optimization (1997),
      ACM Transactions on Mathematical Software, 23, 4, pp. 550 - 560.
    * J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B,
      FORTRAN routines for large scale bound constrained optimization (2011),
      ACM Transactions on Mathematical Software, 38, 1.

    """
    # handle fprime/approx_grad
    if approx_grad:
        fun = func
        jac = None
    elif fprime is None:
        fun = MemoizeJac(func)
        jac = fun.derivative
    else:
        fun = func
        jac = fprime

    # build options
    if disp is None:
        disp = iprint
    opts = {
        'disp': disp,
        'iprint': iprint,
        'maxcor': m,
        'ftol': factr * np.finfo(float).eps,
        'gtol': pgtol,
        'eps': epsilon,
        'maxfun': maxfun,
        'maxiter': maxiter,
        'callback': callback
    }

    res = _minimize_lbfgsb(fun, x0, args=args, jac=jac, bounds=bounds, **opts)
    d = {
        'grad': res['jac'],
        'task': res['message'],
        'funcalls': res['nfev'],
        'nit': res['nit'],
        'warnflag': res['status']
    }
    f = res['fun']
    x = res['x']

    return x, f, d
Пример #4
0
def root(fun,
         x0,
         args=(),
         method='hybr',
         jac=None,
         tol=None,
         callback=None,
         options=None):
    """
    Find a root of a vector function.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    fun : callable
        A vector function to find a root of.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to the objective function and its Jacobian.
    method : str, optional
        Type of solver.  Should be one of

            - 'hybr'
            - 'lm'
            - 'broyden1'
            - 'broyden2'
            - 'anderson'
            - 'linearmixing'
            - 'diagbroyden'
            - 'excitingmixing'
            - 'krylov'

    jac : bool or callable, optional
        If `jac` is a Boolean and is True, `fun` is assumed to return the
        value of Jacobian along with the objective function. If False, the
        Jacobian will be estimated numerically.
        `jac` can also be a callable returning the Jacobian of `fun`. In
        this case, it must accept the same arguments as `fun`.
    tol : float, optional
        Tolerance for termination. For detailed control, use solver-specific
        options.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual. For all methods but 'hybr' and 'lm'.
    options : dict, optional
        A dictionary of solver options. E.g. `xtol` or `maxiter`, see
        ``show_options('root', method)`` for details.

    Returns
    -------
    sol : Result
        The solution represented as a ``Result`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the algorithm exited successfully and
        ``message`` which describes the cause of the termination. See
        `Result` for a description of other attributes.

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *hybr*.

    Method *hybr* uses a modification of the Powell hybrid method as
    implemented in MINPACK [1]_.

    Method *lm* solves the system of nonlinear equations in a least squares
    sense using a modification of the Levenberg-Marquardt algorithm as
    implemented in MINPACK [1]_.

    Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*,
    *diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods,
    with backtracking or full line searches [2]_. Each method corresponds
    to a particular Jacobian approximations. See `nonlin` for details.

    - Method *broyden1* uses Broyden's first Jacobian approximation, it is
      known as Broyden's good method.
    - Method *broyden2* uses Broyden's second Jacobian approximation, it
      is known as Broyden's bad method.
    - Method *anderson* uses (extended) Anderson mixing.
    - Method *Krylov* uses Krylov approximation for inverse Jacobian. It
      is suitable for large-scale problem.
    - Method *diagbroyden* uses diagonal Broyden Jacobian approximation.
    - Method *linearmixing* uses a scalar Jacobian approximation.
    - Method *excitingmixing* uses a tuned diagonal Jacobian
      approximation.

    .. warning::

        The algorithms implemented for methods *diagbroyden*,
        *linearmixing* and *excitingmixing* may be useful for specific
        problems, but whether they will work may depend strongly on the
        problem.

    References
    ----------
    .. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
       1980. User Guide for MINPACK-1.
    .. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
        Equations. Society for Industrial and Applied Mathematics.
        <http://www.siam.org/books/kelley/>

    Examples
    --------
    The following functions define a system of nonlinear equations and its
    jacobian.

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    >>> def jac(x):
    ...     return np.array([[1 + 1.5 * (x[0] - x[1])**2,
    ...                       -1.5 * (x[0] - x[1])**2],
    ...                      [-1.5 * (x[1] - x[0])**2,
    ...                       1 + 1.5 * (x[1] - x[0])**2]])

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
    >>> sol.x
    array([ 0.8411639,  0.1588361])
    """
    meth = method.lower()
    if options is None:
        options = {}

    if callback is not None and meth in ('hybr', 'lm'):
        warn('Method %s does not accept callback.' % method, RuntimeWarning)

    # fun also returns the jacobian
    if not callable(jac) and meth in ('hybr', 'lm'):
        if bool(jac):
            fun = MemoizeJac(fun)
            jac = fun.derivative
        else:
            jac = None

    # set default tolerances
    if tol is not None:
        options = dict(options)
        if meth in ('hybr', 'lm'):
            options.setdefault('xtol', tol)
        elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
                      'diagbroyden', 'excitingmixing', 'krylov'):
            options.setdefault('xtol', tol)
            options.setdefault('xatol', np.inf)
            options.setdefault('ftol', np.inf)
            options.setdefault('fatol', np.inf)

    if meth == 'hybr':
        sol = _root_hybr(fun, x0, args=args, jac=jac, **options)
    elif meth == 'lm':
        sol = _root_leastsq(fun, x0, args=args, jac=jac, **options)
    elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
                  'diagbroyden', 'excitingmixing', 'krylov'):
        if jac is not None:
            warn('Method %s does not use the jacobian (jac).' % method,
                 RuntimeWarning)
        sol = _root_nonlin_solve(fun,
                                 x0,
                                 args=args,
                                 jac=jac,
                                 _method=meth,
                                 _callback=callback,
                                 **options)
    else:
        raise ValueError('Unknown solver %s' % method)

    return sol
Пример #5
0
def root(fun,
         x0,
         args=(),
         method='hybr',
         jac=None,
         options=None,
         callback=None):
    """
    Find a root of a vector function.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    fun : callable
        A vector function to find a root of.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to the objective function and its Jacobian.
    method : str, optional
        Type of solver.  Should be one of

            - 'hybr'
            - 'lm'
            - 'broyden1'
            - 'broyden2'
            - 'anderson'
            - 'linearmixing'
            - 'diagbroyden'
            - 'excitingmixing'
            - 'krylov'

    jac : bool or callable, optional
        If `jac` is a Boolean and is True, `fun` is assumed to return the
        value of Jacobian along with the objective function. If False, the
        Jacobian will be estimated numerically.
        `jac` can also be a callable returning the Jacobian of `fun`. In
        this case, it must accept the same arguments as `fun`.
    options : dict, optional
        A dictionary of solver options. E.g. `xtol` or `maxiter`, see
        ``show_options('root', method)`` for details.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual. For all methods but 'hybr' and 'lm'.

    Returns
    -------
    sol : Result
        The solution represented as a ``Result`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the algorithm exited successfully and
        ``message`` which describes the cause of the termination. See
        `Result` for a description of other attributes.

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *hybr*.

    Method *hybr* uses a modification of the Powell hybrid method as
    implemented in MINPACK [1]_.

    Method *lm* solves the system of nonlinear equations in a least squares
    sense using a modification of the Levenberg-Marquardt algorithm as
    implemented in MINPACK [1]_.

    Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*,
    *diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods,
    with backtracking or full line searches [2]_. Each method corresponds
    to a particular Jacobian approximations. See `nonlin` for details.

    - Method *broyden1* uses Broyden's first Jacobian approximation, it is
      known as Broyden's good method.
    - Method *broyden2* uses Broyden's second Jacobian approximation, it
      is known as Broyden's bad method.
    - Method *anderson* uses (extended) Anderson mixing.
    - Method *Krylov* uses Krylov approximation for inverse Jacobian. It
      is suitable for large-scale problem.
    - Method *diagbroyden* uses diagonal Broyden Jacobian approximation.
    - Method *linearmixing* uses a scalar Jacobian approximation.
    - Method *excitingmixing* uses a tuned diagonal Jacobian
      approximation.

    .. warning::

        The algorithms implemented for methods *diagbroyden*,
        *linearmixing* and *excitingmixing* may be useful for specific
        problems, but whether they will work may depend strongly on the
        problem.

    References
    ----------
    .. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
       1980. User Guide for MINPACK-1.
    .. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
        Equations. Society for Industrial and Applied Mathematics.
        <http://www.siam.org/books/kelley/>

    Examples
    --------
    The following functions define a system of nonlinear equations and its
    jacobian.

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    >>> def jac(x):
    ...     return np.array([[1 + 1.5 * (x[0] - x[1])**2,
    ...                       -1.5 * (x[0] - x[1])**2],
    ...                      [-1.5 * (x[1] - x[0])**2,
    ...                       1 + 1.5 * (x[1] - x[0])**2]])

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
    >>> sol.x
    array([ 0.8411639,  0.1588361])
    """
    meth = method.lower()
    if options is None:
        options = {}

    if callback is not None and meth in ('hybr', 'lm'):
        warn('Method %s does not accept callback.' % method, RuntimeWarning)

    # fun also returns the jacobian
    if not callable(jac) and meth in ('hybr', 'lm'):
        if bool(jac):
            fun = MemoizeJac(fun)
            jac = fun.derivative
        else:
            jac = None

    if meth == 'hybr':
        sol = _root_hybr(fun, x0, args=args, jac=jac, options=options)
    elif meth == 'lm':
        col_deriv = options.get('col_deriv', 0)
        xtol = options.get('xtol', 1.49012e-08)
        ftol = options.get('ftol', 1.49012e-08)
        gtol = options.get('gtol', 0.0)
        maxfev = options.get('maxfev', 0)
        epsfcn = options.get('epsfcn', 0.0)
        factor = options.get('factor', 100)
        diag = options.get('diag', None)
        x, cov_x, info, msg, ier = leastsq(fun,
                                           x0,
                                           args=args,
                                           Dfun=jac,
                                           full_output=True,
                                           col_deriv=col_deriv,
                                           xtol=xtol,
                                           ftol=ftol,
                                           gtol=gtol,
                                           maxfev=maxfev,
                                           epsfcn=epsfcn,
                                           factor=factor,
                                           diag=diag)
        sol = Result(x=x,
                     message=msg,
                     status=ier,
                     success=ier in (1, 2, 3, 4),
                     cov_x=cov_x,
                     fun=info.pop('fvec'))
        sol.update(info)
    elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
                  'diagbroyden', 'excitingmixing', 'krylov'):
        if jac is not None:
            warn('Method %s does not use the jacobian (jac).' % method,
                 RuntimeWarning)

        jacobian = {
            'broyden1': nonlin.BroydenFirst,
            'broyden2': nonlin.BroydenSecond,
            'anderson': nonlin.Anderson,
            'linearmixing': nonlin.LinearMixing,
            'diagbroyden': nonlin.DiagBroyden,
            'excitingmixing': nonlin.ExcitingMixing,
            'krylov': nonlin.KrylovJacobian
        }[meth]

        nit = options.get('nit')
        verbose = options.get('disp', False)
        maxiter = options.get('maxiter')
        f_tol = options.get('ftol')
        f_rtol = options.get('frtol')
        x_tol = options.get('xtol')
        x_rtol = options.get('xrtol')
        tol_norm = options.get('tol_norm')
        line_search = options.get('line_search', 'armijo')

        jac_opts = options.get('jac_options', dict())

        if args:

            def f(x):
                if jac == True:
                    r = fun(x, *args)[0]
                else:
                    r = fun(x, *args)
                return r
        else:
            f = fun

        x, info = nonlin.nonlin_solve(f,
                                      x0,
                                      jacobian=jacobian(**jac_opts),
                                      iter=nit,
                                      verbose=verbose,
                                      maxiter=maxiter,
                                      f_tol=f_tol,
                                      f_rtol=f_rtol,
                                      x_tol=x_tol,
                                      x_rtol=x_rtol,
                                      tol_norm=tol_norm,
                                      line_search=line_search,
                                      callback=callback,
                                      full_output=True,
                                      raise_exception=False)
        sol = Result(x=x)
        sol.update(info)
    else:
        raise ValueError('Unknown solver %s' % method)

    return sol