Пример #1
0
    def setup_options_and_constraints(self):
        options = option.Options()
        options.add('test', 5)
        options.add('test2', "test")

        self.options = options
        self.constraints = {}
Пример #2
0
    def setup_options_and_constraints(self):
        options =     { 'sterics'        :  1,
                        'verbose'        :  0,
                        'frequency'      :  10,
                        'max_node_level'  : 20,
                        'max_steps'       : 100000000,
                        'max_solutions'   : 10,
                        'max_size'        : 100000000,
                        'min_size'        : 0,
                        'accept_score'    : 10}

        self.options = option.Options(options)
Пример #3
0
    def __init__(self, mtype=None, mid=None, code=EMPTY, payload='', token=''):

        if payload is None:
            raise TypeError(
                "Payload must not be None. Use empty string instead.")

        self.version = 1
        self.mtype = mtype
        self.code = code
        self.mid = mid
        self.token = token
        self.opt = option.Options()
        self.payload = payload

        self.remote = None
        self.timeout = MAX_TRANSMIT_WAIT
Пример #4
0
    def setup_options_and_constraints(self):
        options = {'sterics': 1}

        self.options = option.Options(options)
        self.constraints = {}
Пример #5
0
import pandas as pd
import option as opt
import os
import numpy as np
from keras.preprocessing.text import Tokenizer
from keras import preprocessing

op = opt.Options()
tokenizer = Tokenizer(num_words=1000)


def get_word_index():  # 단어 인덱스를 구축
    for idx, dirnames in enumerate(op.clean_data_dir):
        for filename in os.listdir(dirnames):
            infilename = dirnames + "/" + filename
            news = pd.read_csv(infilename, header=None, encoding="euc-kr")
            tokenizer.fit_on_texts(news.iloc[:, 0])
    #print("각 단어의 인덱스: \n", tokenizer.word_index)
    return tokenizer


def make_onehot(t, data):  # 원-핫 이진 벡터 표현
    one_hot_results = t.texts_to_matrix(data)
    return one_hot_results


def make_word_seq(t, data):
    word_seq_results = t.texts_to_sequences(data)
    word_seq_results = preprocessing.sequence.pad_sequences(word_seq_results,
                                                            maxlen=op.max_len)
    return word_seq_results