Пример #1
0
def test(opt):
    log = helpers.Logger(opt.verbose)
    timer = helpers.Timer()
    # Load data =========================================================
    log.info('Reading corpora')
    # Read vocabs
    widss, ids2ws, widst, ids2wt = helpers.get_dictionaries(opt, test=True)
    # Read test
    tests_data = np.asarray(data.read_corpus(opt.test_src, widss), dtype=list)
    # Test output
    if not opt.test_out:
        opt.test_out = helpers.exp_filename(opt, 'test.out')
    # Get target language model
    lang_model = helpers.get_language_model(opt, None, widst, test=True)
    # Create model ======================================================
    log.info('Creating model')
    s2s = helpers.build_model(opt, widss, widst, lang_model, test=True)
    # Print configuration ===============================================
    if opt.verbose:
        options.print_config(opt,
                             src_dict_size=len(widss),
                             trg_dict_size=len(widst))
    # Start testing =====================================================
    log.info('Start running on test set, buckle up!')
    timer.restart()
    translations = []
    s2s.set_test_mode()
    for i, x in enumerate(tests_data):
        y = s2s.translate(x, beam_size=opt.beam_size)
        translations.append(' '.join([ids2wt[w] for w in y[1:-1]]))
    np.savetxt(opt.test_out, translations, fmt='%s')
    translations = np.asarray(translations, dtype=str)
    BLEU, details = evaluation.bleu_score(opt.test_dst, opt.test_out)
    log.info('Finished running on test set %.2f elapsed.' % timer.tick())
    log.info(details)
Пример #2
0
def test(opt):
    # Load data =========================================================
    if opt.verbose:
        print('Reading corpora')
    # Read vocabs
    if opt.dic_src:
        widss, ids2ws = data.load_dic(opt.dic_src)
    else:
        widss, ids2ws = data.read_dic(opt.train_src, max_size=opt.src_vocab_size)
        data.save_dic(opt.exp_name + '_src_dic.txt', widss)

    if opt.dic_dst:
        widst, ids2wt = data.load_dic(opt.dic_dst)
    else:
        widst, ids2wt = data.read_dic(opt.train_dst, max_size=opt.trg_vocab_size)
        data.save_dic(opt.exp_name + '_trg_dic.txt', widst)
    # Read test
    tests_data = data.read_corpus(opt.test_src, widss)
    # Create model ======================================================
    if opt.verbose:
        print('Creating model')
        sys.stdout.flush()
    s2s = seq2seq.Seq2SeqModel(opt.emb_dim,
                               opt.hidden_dim,
                               opt.att_dim,
                               widss,
                               widst,
                               model_file=opt.model,
                               bidir=opt.bidir,
                               word_emb=opt.word_emb,
                               dropout=opt.dropout_rate,
                               max_len=opt.max_len)

    if s2s.model_file is not None:
        s2s.load()
    s2s.model_file = opt.exp_name + '_model'
    # Print configuration ===============================================
    if opt.verbose:
        options.print_config(opt, src_dict_size=len(widss), trg_dict_size=len(widst))
        sys.stdout.flush()
    # Start testing =====================================================
    print('Start running on test set, buckle up!')
    sys.stdout.flush()
    test_start = time.time()
    with open(opt.test_out, 'w+') as of:
        for x in tests_data:
            y = s2s.translate(x, beam_size=opt.beam_size)
            translation = ' '.join([ids2wt[w] for w in y[1:-1]])
            of.write(translation+'\n')
    _, details = evaluation.bleu_score(opt.test_dst, opt.test_out)
    test_elapsed = time.time()-test_start
    print('Finished running on test set', test_elapsed, 'elapsed.')
    print(details)
    sys.stdout.flush()
Пример #3
0
import data

# Retrieve command line options
opt = options.rnn_parser().parse_args()
# 
if opt.model_out is None:
    if opt.model_in is None:
        opt.model_out = opt.exp_name + '_model.txt'
    else:
        opt.model_out = opt.model_in
else:
    model_out = opt.model_out

# print config
if opt.verbose:
    options.print_config(opt)

# Load data
N_train = 55000
N_dev = 5000
N_test = 10000
train_x, dev_x, test_x, train_y, dev_y, test_y = data.get_mnist(N_dev, shuffle=opt.shuffle, preprocessing=data.whiten)

# Model parameters
num_classes = len(set(train_y)) # Number of classes
input_length = train_x.shape[1] # Dimension of the input
dh= opt.hidden_dim
di= 1

# Create model
model = dy.Model()                      # DyNet Model
Пример #4
0
def train(opt):
    # Load data =========================================================
    if opt.verbose:
        print('Reading corpora')
    # Read vocabs
    if opt.dic_src:
        widss, ids2ws = data.load_dic(opt.dic_src)
    else:
        widss, ids2ws = data.read_dic(opt.train_src, max_size=opt.src_vocab_size)
        data.save_dic(opt.exp_name + '_src_dic.txt', widss)

    if opt.dic_dst:
        widst, ids2wt = data.load_dic(opt.dic_dst)
    else:
        widst, ids2wt = data.read_dic(opt.train_dst, max_size=opt.trg_vocab_size)
        data.save_dic(opt.exp_name + '_trg_dic.txt', widst)

    # Read training
    trainings_data = data.read_corpus(opt.train_src, widss)
    trainingt_data = data.read_corpus(opt.train_dst, widst)
    # Read validation
    valids_data = data.read_corpus(opt.valid_src, widss)
    validt_data = data.read_corpus(opt.valid_dst, widst)

    # Create model ======================================================
    if opt.verbose:
        print('Creating model')
        sys.stdout.flush()
    s2s = seq2seq.Seq2SeqModel(opt.emb_dim,
                               opt.hidden_dim,
                               opt.att_dim,
                               widss,
                               widst,
                               model_file=opt.model,
                               bidir=opt.bidir,
                               word_emb=opt.word_emb,
                               dropout=opt.dropout_rate,
                               max_len=opt.max_len)

    if s2s.model_file is not None:
        s2s.load()
    s2s.model_file = opt.exp_name+'_model.txt'
    # Trainer ==========================================================
    if opt.trainer == 'sgd':
        trainer = dy.SimpleSGDTrainer(
            s2s.model, e0=opt.learning_rate, edecay=opt.learning_rate_decay)
    if opt.trainer == 'clr':
        trainer = dy.CyclicalSGDTrainer(s2s.model, e0_min=opt.learning_rate / 10,
                                        e0_max=opt.learning_rate, edecay=opt.learning_rate_decay)
    elif opt.trainer == 'momentum':
        trainer = dy.MomentumSGDTrainer(
            s2s.model, e0=opt.learning_rate, edecay=opt.learning_rate_decay)
    elif opt.trainer == 'rmsprop':
        trainer = dy.RMSPropTrainer(s2s.model, e0=opt.learning_rate,
                                    edecay=opt.learning_rate_decay)
    elif opt.trainer == 'adam':
        trainer = dy.AdamTrainer(s2s.model, opt.learning_rate, edecay=opt.learning_rate_decay)
    else:
        print('Trainer name invalid or not provided, using SGD', file=sys.stderr)
        trainer = dy.SimpleSGDTrainer(
            s2s.model, e0=opt.learning_rate, edecay=opt.learning_rate_decay)
    if opt.verbose:
        print('Using '+opt.trainer+' optimizer')
    trainer.set_clip_threshold(opt.gradient_clip)
    # Print configuration ===============================================
    if opt.verbose:
        options.print_config(opt, src_dict_size=len(widss), trg_dict_size=len(widst))
        sys.stdout.flush()
    # Creat batch loaders ===============================================
    if opt.verbose:
        print('Creating batch loaders')
        sys.stdout.flush()
    trainbatchloader = data.BatchLoader(trainings_data, trainingt_data, opt.batch_size)
    devbatchloader = data.BatchLoader(valids_data, validt_data, opt.dev_batch_size)
    # Start training ====================================================
    if opt.verbose:
        print('starting training')
        sys.stdout.flush()
    start = time.time()
    train_loss = 0
    processed = 0
    best_bleu = 0
    i = 0
    for epoch in range(opt.num_epochs):
        for x, y in trainbatchloader:
            processed += sum(map(len, y))
            bsize = len(y)
            # Compute loss
            loss = s2s.calculate_loss(x, y)
            # Backward pass and parameter update
            loss.backward()
            trainer.update()
            train_loss += loss.scalar_value() * bsize
            if (i+1) % opt.check_train_error_every == 0:
                # Check average training error from time to time
                logloss = train_loss / processed
                ppl = np.exp(logloss)
                elapsed = time.time()-start
                trainer.status()
                print(" Training_loss=%f, ppl=%f, time=%f s, tokens processed=%d" %
                      (logloss, ppl, elapsed, processed))
                start = time.time()
                train_loss = 0
                processed = 0
                sys.stdout.flush()
            if (i+1) % opt.check_valid_error_every == 0:
                # Check generalization error on the validation set from time to time
                dev_loss = 0
                dev_processed = 0
                dev_start = time.time()
                for x, y in devbatchloader:
                    dev_processed += sum(map(len, y))
                    bsize = len(y)
                    loss = s2s.calculate_loss(x, y, test=True)
                    dev_loss += loss.scalar_value() * bsize
                dev_logloss = dev_loss/dev_processed
                dev_ppl = np.exp(dev_logloss)
                dev_elapsed = time.time()-dev_start
                print("[epoch %d] Dev loss=%f, ppl=%f, time=%f s, tokens processed=%d" %
                      (epoch, dev_logloss, dev_ppl, dev_elapsed, dev_processed))
                sys.stdout.flush()
                start = time.time()

            if (i+1) % opt.valid_bleu_every == 0:
                # Check BLEU score on the validation set from time to time
                print('Start translating validation set, buckle up!')
                sys.stdout.flush()
                bleu_start = time.time()
                with open(opt.valid_out, 'w+') as f:
                    for x in valids_data:
                        y_hat = s2s.translate(x, beam_size=opt.beam_size)
                        translation = [ids2wt[w] for w in y_hat[1:-1]]
                        print(' '.join(translation), file=f)
                bleu, details = evaluation.bleu_score(opt.valid_dst, opt.valid_out)
                bleu_elapsed = time.time()-bleu_start
                print('Finished translating validation set', bleu_elapsed, 'elapsed.')
                print(details)
                # Early stopping : save the latest best model
                if bleu > best_bleu:
                    best_bleu = bleu
                    print('Best BLEU score up to date, saving model to', s2s.model_file)
                    s2s.save()
                sys.stdout.flush()
                start = time.time()
            i = i+1
        trainer.update_epoch()
Пример #5
0
def eval_user_adaptation(opt):
    log = utils.Logger(opt.verbose)
    timer = utils.Timer()
    # Read vocabs
    lexicon = helpers.get_lexicon(opt)
    # Read data
    filepairs = load_user_filepairs(opt.usr_file_list)
    # Get target language model
    lang_model = None
    # Load model
    s2s = helpers.build_model(opt, lexicon, lang_model, test=True)
    if opt.update_mode == 'mixture_weights' and not opt.user_recognizer == 'fact_voc':
        log.info('Updating only the mixture weights doesn\'t make sense here')
        exit()
    s2s.lm = lexicon.trg_unigrams
    #    s2s.freeze_parameters()
    # Trainer
    trainer = helpers.get_trainer(opt, s2s)
    # print config
    if opt.verbose:
        options.print_config(opt,
                             src_dict_size=len(lexicon.w2ids),
                             trg_dict_size=len(lexicon.w2idt))
    # This will store translations and gold sentences
    base_translations = []
    adapt_translations = []
    gold = []
    # Run training
    for usr_id, (src_file, trg_file) in enumerate(filepairs):
        log.info('Evaluating on files %s' %
                 os.path.basename(src_file).split()[0])
        # Load file pair
        src_data = data.read_corpus(src_file, lexicon.w2ids, raw=True)
        trg_data = data.read_corpus(trg_file, lexicon.w2idt, raw=True)
        # split train/test
        train_src, test_src, train_trg, test_trg, order = split_user_data(
            src_data, trg_data, n_test=opt.n_test)
        # Convert train data to indices
        train_src = lexicon.sents_to_ids(train_src)
        train_trg = lexicon.sents_to_ids(train_trg, trg=True)
        # Save test data
        for s in test_trg:
            gold.append(' '.join(s))
        # Reset model
        s2s.load()
        s2s.reset_usr_vec()
        # Translate with baseline model
        base_translations.extend(evaluate_model(s2s, test_src, opt.beam_size))
        # Start loop
        n_train = opt.max_n_train
        adapt_translations.extend(
            adapt_user(s2s, trainer, train_src[:n_train], train_trg[:n_train],
                       test_src, opt))

    # Temp files
    temp_gold = utils.exp_temp_filename(opt, 'gold.txt')
    temp_base = utils.exp_temp_filename(opt, '%s_base.txt' % opt.update_mode)
    temp_adapt = utils.exp_temp_filename(opt, '%s_adapt.txt' % opt.update_mode)
    utils.savetxt(temp_gold, gold)
    utils.savetxt(temp_base, base_translations)
    utils.savetxt(temp_adapt, adapt_translations)
    # Evaluate base translations
    bleu, details = evaluation.bleu_score(temp_gold, temp_base)
    log.info('Base BLEU score: %.2f' % bleu)
    # Evaluate base translations
    bleu, details = evaluation.bleu_score(temp_gold, temp_adapt)
    log.info('Adaptation BLEU score: %.2f' % bleu)
    # Compare both
    temp_bootstrap_gold = utils.exp_temp_filename(opt, 'bootstrap_gold.txt')
    temp_bootstrap_base = utils.exp_temp_filename(opt, 'bootstrap_base.txt')
    temp_bootstrap_adapt = utils.exp_temp_filename(opt, 'bootstrap_adapt.txt')
    bleus = evaluation.paired_bootstrap_resampling(
        temp_gold, temp_base, temp_adapt, opt.bootstrap_num_samples,
        opt.bootstrap_sample_size, temp_bootstrap_gold, temp_bootstrap_base,
        temp_bootstrap_adapt)
    evaluation.print_paired_stats(bleus)
    os.remove(temp_bootstrap_gold)
    os.remove(temp_bootstrap_base)
    os.remove(temp_bootstrap_adapt)
Пример #6
0
def train(opt):
    log = helpers.Logger(opt.verbose)
    timer = helpers.Timer()
    # Load data =========================================================
    log.info('Reading corpora')
    # Read vocabs
    widss, ids2ws, widst, ids2wt = helpers.get_dictionaries(opt)

    # Read training
    trainings_data = data.read_corpus(opt.train_src, widss)
    trainingt_data = data.read_corpus(opt.train_dst, widst)
    # Read validation
    valids_data = data.read_corpus(opt.valid_src, widss)
    validt_data = data.read_corpus(opt.valid_dst, widst)
    # Validation output
    if not opt.valid_out:
        opt.valid_out = helpers.exp_filename(opt, 'valid.out')
    # Get target language model
    lang_model = helpers.get_language_model(opt, trainingt_data, widst)
    # Create model ======================================================
    log.info('Creating model')
    s2s = helpers.build_model(opt, widss, widst, lang_model)

    # Trainer ==========================================================
    trainer = helpers.get_trainer(opt, s2s)
    log.info('Using ' + opt.trainer + ' optimizer')
    # Print configuration ===============================================
    if opt.verbose:
        options.print_config(opt,
                             src_dict_size=len(widss),
                             trg_dict_size=len(widst))
    # Creat batch loaders ===============================================
    log.info('Creating batch loaders')
    trainbatchloader = data.BatchLoader(trainings_data, trainingt_data,
                                        opt.batch_size)
    devbatchloader = data.BatchLoader(valids_data, validt_data,
                                      opt.dev_batch_size)
    # Start training ====================================================
    log.info('starting training')
    timer.restart()
    train_loss = 0
    processed = 0
    best_bleu = -1
    deadline = 0
    i = 0
    for epoch in range(opt.num_epochs):
        for x, y in trainbatchloader:
            s2s.set_train_mode()
            processed += sum(map(len, y))
            bsize = len(y)
            # Compute loss
            loss = s2s.calculate_loss(x, y)
            # Backward pass and parameter update
            loss.backward()
            trainer.update()
            train_loss += loss.scalar_value() * bsize
            if (i + 1) % opt.check_train_error_every == 0:
                # Check average training error from time to time
                logloss = train_loss / processed
                ppl = np.exp(logloss)
                trainer.status()
                log.info(
                    " Training_loss=%f, ppl=%f, time=%f s, tokens processed=%d"
                    % (logloss, ppl, timer.tick(), processed))
                train_loss = 0
                processed = 0
            if (i + 1) % opt.check_valid_error_every == 0:
                # Check generalization error on the validation set from time to time
                s2s.set_test_mode()
                dev_loss = 0
                dev_processed = 0
                timer.restart()
                for x, y in devbatchloader:
                    dev_processed += sum(map(len, y))
                    bsize = len(y)
                    loss = s2s.calculate_loss(x, y, test=True)
                    dev_loss += loss.scalar_value() * bsize
                dev_logloss = dev_loss / dev_processed
                dev_ppl = np.exp(dev_logloss)
                log.info(
                    "[epoch %d] Dev loss=%f, ppl=%f, time=%f s, tokens processed=%d"
                    %
                    (epoch, dev_logloss, dev_ppl, timer.tick(), dev_processed))

            if (i + 1) % opt.valid_bleu_every == 0:
                # Check BLEU score on the validation set from time to time
                s2s.set_test_mode()
                log.info('Start translating validation set, buckle up!')
                timer.restart()
                with open(opt.valid_out, 'w+') as f:
                    for x in valids_data:
                        y_hat = s2s.translate(x, beam_size=opt.beam_size)
                        translation = [ids2wt[w] for w in y_hat[1:-1]]
                        print(' '.join(translation), file=f)
                bleu, details = evaluation.bleu_score(opt.valid_dst,
                                                      opt.valid_out)
                log.info('Finished translating validation set %.2f elapsed.' %
                         timer.tick())
                log.info(details)
                # Early stopping : save the latest best model
                if bleu > best_bleu:
                    best_bleu = bleu
                    log.info('Best BLEU score up to date, saving model to %s' %
                             s2s.model_file)
                    s2s.save()
                    deadline = 0
                else:
                    deadline += 1
                if opt.patience > 0 and deadline > opt.patience:
                    log.info('No improvement since %d epochs, early stopping '
                             'with best validation BLEU score: %.3f' %
                             (deadline, best_bleu))
                    exit()
            i = i + 1
        trainer.update_epoch()
def eval_user_adaptation(opt):
    log = utils.Logger(opt.verbose)
    timer = utils.Timer()
    # Read vocabs
    lexicon = helpers.get_lexicon(opt)
    # Read data
    filepairs = load_user_filepairs(opt.usr_file_list)
    # Get target language model
    lang_model = None
    # Load model
    s2s = helpers.build_model(opt, lexicon, lang_model, test=True)
    #if not opt.full_training:
    #    s2s.freeze_parameters()
    # Trainer
    trainer = helpers.get_trainer(opt, s2s)
    # print config
    if opt.verbose:
        options.print_config(opt,
                             src_dict_size=len(lexicon.w2ids),
                             trg_dict_size=len(lexicon.w2idt))
    # This will store translations and gold sentences
    translations = dict([(i, [])
                         for i in range(opt.min_n_train, opt.max_n_train)])
    gold = []
    # Run training
    for usr_id, (src_file, trg_file) in enumerate(filepairs):
        log.info('Evaluating on files %s' %
                 os.path.basename(src_file).split()[0])
        # Load file pair
        src_data = data.read_corpus(src_file, lexicon.w2ids, raw=True)
        trg_data = data.read_corpus(trg_file, lexicon.w2idt, raw=True)
        # split train/test
        train_src, test_src, train_trg, test_trg, order = split_user_data(
            src_data, trg_data, n_test=opt.n_test)
        # Convert train data to indices
        train_src = lexicon.sents_to_ids(train_src)
        train_trg = lexicon.sents_to_ids(train_trg, trg=True)
        # Save test data
        for s in test_trg:
            gold.append(' '.join(s))
        # Start loop
        for n_train in range(opt.min_n_train, opt.max_n_train):
            log.info('Training on %d sentence pairs' % n_train)
            # Train on n_train first sentences
            X, Y = train_src[:n_train], train_trg[:n_train]
            temp_out = utils.exp_temp_filename(opt, str(n_train) + 'out.txt')
            if opt.full_training:
                s2s.load()
            if opt.log_unigram_bias:
                if opt.use_trg_unigrams:
                    unigrams = lexicon.compute_unigrams(Y, lang='trg')
                else:
                    unigrams = lexicon.estimate_unigrams(X)
                log_unigrams = np.log(unigrams + opt.log_unigrams_eps)
                s2s.reset_usr_vec(log_unigrams)
            elif n_train > 0:
                adapt(s2s, trainer, X, Y, opt.num_epochs,
                      opt.check_train_error_every)
            log.info('Translating test file')
            s2s.set_test_mode()
            # Test on test split
            for x in test_src:
                y_hat = s2s.translate(x, 0, beam_size=opt.beam_size)
                translations[n_train].append(y_hat)

    # Temp files
    temp_gold = utils.exp_temp_filename(opt, 'gold.txt')
    np.savetxt(temp_gold, gold, fmt='%s')
    # Results
    test_bleus = np.zeros(opt.max_n_train - opt.min_n_train)
    for n_train in range(opt.min_n_train, opt.max_n_train):
        log.info('Evaluation for %d sentence pairs' % n_train)
        temp_out = utils.exp_temp_filename(opt, str(n_train) + 'out.txt')
        temp_bootstrap_out = utils.exp_temp_filename(
            opt,
            str(n_train) + '_bootstrap_out.txt')
        temp_bootstrap_ref = utils.exp_temp_filename(
            opt,
            str(n_train) + '_bootstrap_ref.txt')
        np.savetxt(temp_out, translations[n_train], fmt='%s')
        bleu, details = evaluation.bleu_score(temp_gold, temp_out)
        log.info('BLEU score: %.2f' % bleu)
        bleus = evaluation.bootstrap_resampling(temp_gold, temp_out,
                                                opt.bootstrap_num_samples,
                                                opt.bootstrap_sample_size,
                                                temp_bootstrap_ref,
                                                temp_bootstrap_out)
        evaluation.print_stats(bleus)
        test_bleus[n_train - opt.min_n_train] = bleu
    np.savetxt(utils.exp_filename(opt, 'bleu_scores.txt'),
               test_bleus,
               fmt='%.3f')