Пример #1
0
def test_study_system_attr_for_population_cache() -> None:
    sampler = multi_objective.samplers.NSGAIIMultiObjectiveSampler(
        population_size=10)
    study = multi_objective.create_study(["minimize"], sampler=sampler)

    def get_cached_entries(
        study: multi_objective.study.MultiObjectiveStudy,
    ) -> List[Tuple[int, List[int]]]:
        return [
            v for k, v in study.system_attrs.items() if k.startswith(
                multi_objective.samplers._nsga2._POPULATION_CACHE_KEY_PREFIX)
        ]

    study.optimize(lambda t: [t.suggest_float("x", 0, 9)], n_trials=10)
    cached_entries = get_cached_entries(study)
    assert len(cached_entries) == 0

    study.optimize(lambda t: [t.suggest_float("x", 0, 9)], n_trials=1)
    cached_entries = get_cached_entries(study)
    assert len(cached_entries) == 1
    assert cached_entries[0][0] == 0  # Cached generation.
    assert len(cached_entries[0][1]) == 10  # Population size.

    study.optimize(lambda t: [t.suggest_float("x", 0, 9)], n_trials=10)
    cached_entries = get_cached_entries(study)
    assert len(cached_entries) == 1
    assert cached_entries[0][0] == 1  # Cached generation.
    assert len(cached_entries[0][1]) == 10  # Population size.
Пример #2
0
def test_population_size() -> None:
    # Set `population_size` to 10.
    sampler = multi_objective.samplers.NSGAIIMultiObjectiveSampler(
        population_size=10)

    study = multi_objective.create_study(["minimize"], sampler=sampler)
    study.optimize(lambda t: [t.suggest_uniform("x", 0, 9)], n_trials=40)

    generations = Counter([
        t.system_attrs[multi_objective.samplers._nsga2._GENERATION_KEY]
        for t in study.trials
    ])
    assert generations == {0: 10, 1: 10, 2: 10, 3: 10}

    # Set `population_size` to 2.
    sampler = multi_objective.samplers.NSGAIIMultiObjectiveSampler(
        population_size=2)

    study = multi_objective.create_study(["minimize"], sampler=sampler)
    study.optimize(lambda t: [t.suggest_uniform("x", 0, 9)], n_trials=40)

    generations = Counter([
        t.system_attrs[multi_objective.samplers._nsga2._GENERATION_KEY]
        for t in study.trials
    ])
    assert generations == {i: 2 for i in range(20)}

    # Invalid population size.
    with pytest.raises(ValueError):
        # Less than 2.
        multi_objective.samplers.NSGAIIMultiObjectiveSampler(population_size=1)

    with pytest.raises(TypeError):
        # Not an integer.
        multi_objective.samplers.NSGAIIMultiObjectiveSampler(
            population_size=2.5)  # type: ignore