Пример #1
0
    def test_calculate(mus, flags, expected):
        # type: (List[float], Dict[str, bool], Dict[str, List[float]]) -> None

        s_weights, s_mus, s_sigmas = \
            _ParzenEstimator._calculate(mus, -1.0, 1.0, prior_weight=1.0,
                                        consider_prior=flags['prior'],
                                        consider_magic_clip=flags['magic_clip'],
                                        consider_endpoints=flags['endpoints'],
                                        weights_func=default_weights)

        # Result contains an additional value for a prior distribution if consider_prior is True.
        np.testing.assert_almost_equal(s_weights, expected['weights'])
        np.testing.assert_almost_equal(s_mus, expected['mus'])
        np.testing.assert_almost_equal(s_sigmas, expected['sigmas'])
Пример #2
0
    def test_calculate_shape_check(mus, prior, magic_clip, endpoints):
        # type: (List[float], bool, bool, bool) -> None

        s_weights, s_mus, s_sigmas = \
            _ParzenEstimator._calculate(mus, -1.0, 1.0, prior_weight=1.0,
                                        consider_prior=prior,
                                        consider_magic_clip=magic_clip,
                                        consider_endpoints=endpoints,
                                        weights_func=default_weights)

        # Result contains an additional value for a prior distribution if prior is True.
        assert len(s_weights) == len(mus) + int(prior)
        assert len(s_mus) == len(mus) + int(prior)
        assert len(s_sigmas) == len(mus) + int(prior)