Пример #1
0
    def test_single_camera_point_positions(self):
        """Point positions for a single camera case"""

        num_cams = 1
        # prepare MultimediaParams
        cpar_file = b'testing_fodder/single_cam/parameters/ptv.par'
        vpar_file = b'testing_fodder/single_cam/parameters/criteria.par'
        cpar = ControlParams(num_cams)
        cpar.read_control_par(cpar_file)
        mult_params = cpar.get_multimedia_params()

        vpar = VolumeParams()
        vpar.read_volume_par(vpar_file)

        ori_name = b'testing_fodder/single_cam/calibration/cam_1.tif.ori'
        add_name = b'testing_fodder/single_cam/calibration/cam_1.tif.addpar'
        calibs = []


        # read calibration for each camera from files
        new_cal = Calibration()
        new_cal.from_file(ori_file=ori_name, add_file=add_name)
        calibs.append(new_cal)


        # 3d point
        points = np.array([[1, 1, 0],
                           [-1, -1, 0]], dtype=float)

        targs_plain = []
        targs_jigged = []


        jigg_amp = 0.4


        new_plain_targ = image_coordinates(
            points, calibs[0], mult_params)
        targs_plain.append(new_plain_targ)

        jigged_points = points - np.r_[0, jigg_amp, 0]

        new_jigged_targs = image_coordinates(
            jigged_points, calibs[0], mult_params)
        targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1,0,2)
        targs_jigged = np.array(targs_jigged).transpose(1,0,2)
        skew_dist_plain = point_positions(targs_plain, cpar, calibs, vpar)
        skew_dist_jigged = point_positions(targs_jigged, cpar, calibs, vpar)

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(np.linalg.norm(jigged_points - skew_dist_jigged[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position after jigging.')
    def test_single_camera_point_positions(self):
        """Point positions for a single camera case"""

        num_cams = 1
        # prepare MultimediaParams
        cpar_file = b'testing_fodder/single_cam/parameters/ptv.par'
        vpar_file = b'testing_fodder/single_cam/parameters/criteria.par'
        cpar = ControlParams(num_cams)
        cpar.read_control_par(cpar_file)
        mult_params = cpar.get_multimedia_params()

        vpar = VolumeParams()
        vpar.read_volume_par(vpar_file)

        ori_name = b'testing_fodder/single_cam/calibration/cam_1.tif.ori'
        add_name = b'testing_fodder/single_cam/calibration/cam_1.tif.addpar'
        calibs = []

        # read calibration for each camera from files
        new_cal = Calibration()
        new_cal.from_file(ori_file=ori_name, add_file=add_name)
        calibs.append(new_cal)

        # 3d point
        points = np.array([[1, 1, 0], [-1, -1, 0]], dtype=float)

        targs_plain = []
        targs_jigged = []

        jigg_amp = 0.4

        new_plain_targ = image_coordinates(points, calibs[0], mult_params)
        targs_plain.append(new_plain_targ)

        jigged_points = points - np.r_[0, jigg_amp, 0]

        new_jigged_targs = image_coordinates(jigged_points, calibs[0],
                                             mult_params)
        targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1, 0, 2)
        targs_jigged = np.array(targs_jigged).transpose(1, 0, 2)
        skew_dist_plain = point_positions(targs_plain, cpar, calibs, vpar)
        skew_dist_jigged = point_positions(targs_jigged, cpar, calibs, vpar)

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(
                np.linalg.norm(jigged_points -
                               skew_dist_jigged[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position after jigging.')
Пример #3
0
 def test_full_corresp(self):
     """Full scene correspondences"""
     print "about to dump core"
     cpar = ControlParams(4)
     cpar.read_control_par("testing_fodder/corresp/control.par")
     vpar = VolumeParams()
     vpar.read_volume_par("testing_fodder/corresp/criteria.par")
     
     # Cameras are at so high angles that opposing cameras don't see each 
     # other in the normal air-glass-water setting.
     cpar.get_multimedia_params().set_layers([1.0001], [1.])
     cpar.get_multimedia_params().set_n3(1.0001)
     
     cals = []
     img_pts = []
     corrected = []
     for c in xrange(4):
         cal = Calibration()
         cal.from_file(
             "testing_fodder/calibration/sym_cam%d.tif.ori" % (c + 1),
             "testing_fodder/calibration/cam1.tif.addpar")
         cals.append(cal)
     
         # Generate test targets.
         targs = TargetArray(16)
         for row, col in np.ndindex(4, 4):
             targ_ix = row*4 + col
             # Avoid symmetric case:
             if (c % 2):
                 targ_ix = 15 - targ_ix
             targ = targs[targ_ix]
             
             pos3d = 10*np.array([[col, row, 0]], dtype=np.float64)
             pos2d = image_coordinates(
                 pos3d, cal, cpar.get_multimedia_params())
             targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])
             
             targ.set_pnr(targ_ix)
             targ.set_pixel_counts(25, 5, 5)
             targ.set_sum_grey_value(10)
         
         img_pts.append(targs)
         mc = MatchedCoords(targs, cpar, cal)
         corrected.append(mc)
     
     sorted_pos, sorted_corresp, num_targs = correspondences(
         img_pts, corrected, cals, vpar, cpar)
     self.failUnlessEqual(num_targs, 16)
Пример #4
0
    def test_full_corresp(self):
        """Full scene correspondences"""
        cpar = ControlParams(4)
        cpar.read_control_par(r"testing_fodder/corresp/control.par")
        vpar = VolumeParams()
        vpar.read_volume_par(r"testing_fodder/corresp/criteria.par")

        # Cameras are at so high angles that opposing cameras don't see each
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.0001], [1.])
        cpar.get_multimedia_params().set_n3(1.0001)

        cals = []
        img_pts = []
        corrected = []
        for c in xrange(4):
            cal = Calibration()
            cal.from_file(
                "testing_fodder/calibration/sym_cam%d.tif.ori" % (c + 1),
                "testing_fodder/calibration/cam1.tif.addpar")
            cals.append(cal)

            # Generate test targets.
            targs = TargetArray(16)
            for row, col in np.ndindex(4, 4):
                targ_ix = row * 4 + col
                # Avoid symmetric case:
                if (c % 2):
                    targ_ix = 15 - targ_ix
                targ = targs[targ_ix]

                pos3d = 10 * np.array([[col, row, 0]], dtype=np.float64)
                pos2d = image_coordinates(pos3d, cal,
                                          cpar.get_multimedia_params())
                targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])

                targ.set_pnr(targ_ix)
                targ.set_pixel_counts(25, 5, 5)
                targ.set_sum_grey_value(10)

            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)

        sorted_pos, sorted_corresp, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 16)
Пример #5
0
    def _button_init_guess_fired(self):
        if self.need_reset:
            self.reset_show_images()
            self.need_reset = 0

        self.cal_points = self._read_cal_points()

        self.cals = []
        for i_cam in range(self.n_cams):
            cal = Calibration()
            tmp = self.cpar.get_cal_img_base_name(i_cam)
            cal.from_file(tmp + '.ori', tmp + '.addpar')
            self.cals.append(cal)

        for i_cam in range(self.n_cams):
            self._project_cal_points(i_cam)
    def test_dumbbell(self):
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()
        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17.5, 42, 0], [-17.5, 42, 0]], dtype=float)

        num_cams = 4
        ori_tmpl = 'testing_fodder/dumbbell/cam{cam_num}.tif.ori'
        add_file = 'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name.encode(),
                              add_file=add_file.encode())
            calibs.append(new_cal)

        for cam_cal in calibs:
            new_plain_targ = flat_image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)

        targs_plain = np.array(targs_plain).transpose(1, 0, 2)

        # The cameras are not actually fully calibrated, so the result is not
        # an exact 0. The test is that changing the expected distance changes
        # the measure.
        tf = dumbbell_target_func(targs_plain, self.control, calibs, 35., 0.)
        self.assertAlmostEqual(tf, 7.14860, 5)  # just a regression test

        # As we check the db length, the measure increases...
        tf_len = dumbbell_target_func(targs_plain, self.control, calibs, 35.,
                                      1.)
        self.assertTrue(tf_len > tf)

        # ...but not as much as when giving the wrong length.
        tf_too_long = dumbbell_target_func(targs_plain, self.control, calibs,
                                           25., 1.)
        self.assertTrue(tf_too_long > tf_len > tf)
Пример #7
0
    def test_dumbbell(self):
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()
        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17.5, 42, 0],
                           [-17.5, 42, 0]], dtype=float)
        
        num_cams = 4
        ori_tmpl = r'testing_fodder/dumbbell/cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = flat_image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)

        targs_plain = np.array(targs_plain).transpose(1,0,2)
        
        # The cameras are not actually fully calibrated, so the result is not 
        # an exact 0. The test is that changing the expected distance changes 
        # the measure.
        tf = dumbbell_target_func(targs_plain, self.control, calibs, 35., 0.)
        self.assertAlmostEqual(tf, 7.14860, 5) # just a regression test
        
        # As we check the db length, the measure increases...
        tf_len = dumbbell_target_func(
            targs_plain, self.control, calibs, 35., 1.)
        self.assertTrue(tf_len > tf)
        
        # ...but not as much as when giving the wrong length.
        tf_too_long = dumbbell_target_func(
            targs_plain, self.control, calibs, 25., 1.)
        self.assertTrue(tf_too_long > tf_len > tf)
Пример #8
0
    def test_single_cam_corresp(self):
        """Single camera correspondence"""
        cpar = ControlParams(1)
        cpar.read_control_par(b"testing_fodder/single_cam/parameters/ptv.par")
        vpar = VolumeParams()
        vpar.read_volume_par(b"testing_fodder/single_cam/parameters/criteria.par")
        
        # Cameras are at so high angles that opposing cameras don't see each 
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.], [1.])
        cpar.get_multimedia_params().set_n3(1.)
        
        cals = []
        img_pts = []
        corrected = []
        cal = Calibration()
        cal.from_file(
            b"testing_fodder/single_cam/calibration/cam_1.tif.ori",
            b"testing_fodder/single_cam/calibration/cam_1.tif.addpar")
        cals.append(cal)
        
        # Generate test targets.
        targs = TargetArray(9)
        for row, col in np.ndindex(3, 3):
            targ_ix = row*3 + col
            targ = targs[targ_ix]
            
            pos3d = 10*np.array([[col, row, 0]], dtype=np.float64)
            pos2d = image_coordinates(
                pos3d, cal, cpar.get_multimedia_params())
            targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])
            
            targ.set_pnr(targ_ix)
            targ.set_pixel_counts(25, 5, 5)
            targ.set_sum_grey_value(10)
            
            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)
        
        _, _, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 9)
Пример #9
0
    def test_single_cam_corresp(self):
        """Single camera correspondence"""
        cpar = ControlParams(1)
        cpar.read_control_par("testing_fodder/single_cam/parameters/ptv.par")
        vpar = VolumeParams()
        vpar.read_volume_par(
            "testing_fodder/single_cam/parameters/criteria.par")

        # Cameras are at so high angles that opposing cameras don't see each
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.], [1.])
        cpar.get_multimedia_params().set_n3(1.)

        cals = []
        img_pts = []
        corrected = []
        cal = Calibration()
        cal.from_file(
            "testing_fodder/single_cam/calibration/cam_1.tif.ori",
            "testing_fodder/single_cam/calibration/cam_1.tif.addpar")
        cals.append(cal)

        # Generate test targets.
        targs = TargetArray(9)
        for row, col in np.ndindex(3, 3):
            targ_ix = row * 3 + col
            targ = targs[targ_ix]

            pos3d = 10 * np.array([[col, row, 0]], dtype=np.float64)
            pos2d = image_coordinates(pos3d, cal, cpar.get_multimedia_params())
            targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])

            targ.set_pnr(targ_ix)
            targ.set_pixel_counts(25, 5, 5)
            targ.set_sum_grey_value(10)

            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)

        sorted_pos, sorted_corresp, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 9)
Пример #10
0
    def test_instantiate(self):
        """Creating a MatchedCoords object"""
        cal = Calibration()
        cpar = ControlParams(4)

        cal.from_file("testing_fodder/calibration/cam1.tif.ori",
                      "testing_fodder/calibration/cam2.tif.addpar")
        cpar.read_control_par("testing_fodder/corresp/control.par")
        targs = read_targets("testing_fodder/frame/cam1.", 333)

        mc = MatchedCoords(targs, cpar, cal)
        pos, pnr = mc.as_arrays()

        # x sorted?
        self.failUnless(np.all(pos[1:, 0] > pos[:-1, 0]))

        # Manually verified order for the loaded data:
        np.testing.assert_array_equal(
            pnr, np.r_[6, 11, 10, 8, 1, 4, 7, 0, 2, 9, 5, 3, 12])
Пример #11
0
def py_determination_proc_c(n_cams, sorted_pos, sorted_corresp, corrected):
    """ Returns 3d positions """

    # Control parameters
    cpar = ControlParams(n_cams)
    cpar.read_control_par(b'parameters/ptv.par')

    # Volume parameters
    vpar = VolumeParams()
    vpar.read_volume_par(b'parameters/criteria.par')

    cals =[]
    for i_cam in range(n_cams):
        cal = Calibration()
        tmp = cpar.get_cal_img_base_name(i_cam)
        cal.from_file(tmp + b'.ori', tmp + b'.addpar')
        cals.append(cal)


    # Distinction between quad/trip irrelevant here.
    sorted_pos = np.concatenate(sorted_pos, axis=1)
    sorted_corresp = np.concatenate(sorted_corresp, axis=1)


    flat = np.array([corrected[i].get_by_pnrs(sorted_corresp[i]) \
                     for i in range(len(cals))])
    pos, rcm = point_positions(
        flat.transpose(1,0,2), cpar, cals, vpar)

    if len(cals) < 4:
        print_corresp = -1*np.ones((4,sorted_corresp.shape[1]))
        print_corresp[:len(cals),:] = sorted_corresp
    else:
        print_corresp = sorted_corresp

    # Save rt_is in a temporary file
    fname = b"".join([default_naming['corres'],b'.123456789']) # hard-coded frame number
    with open(fname, 'w') as rt_is:
        rt_is.write(str(pos.shape[0]) + '\n')
        for pix, pt in enumerate(pos):
            pt_args = (pix + 1,) + tuple(pt) + tuple(print_corresp[:,pix])
            rt_is.write("%4d %9.3f %9.3f %9.3f %4d %4d %4d %4d\n" % pt_args)
Пример #12
0
    def test_instantiate(self):
        """Creating a MatchedCoords object"""
        cal = Calibration()
        cpar = ControlParams(4)

        cal.from_file(
            b"testing_fodder/calibration/cam1.tif.ori",
            b"testing_fodder/calibration/cam2.tif.addpar")
        cpar.read_control_par(b"testing_fodder/corresp/control.par")
        targs = read_targets("testing_fodder/frame/cam1.", 333)
        
        mc = MatchedCoords(targs, cpar, cal)
        pos, pnr = mc.as_arrays()
        
        # x sorted?
        self.failUnless(np.all(pos[1:,0] > pos[:-1,0]))
        
        # Manually verified order for the loaded data:
        np.testing.assert_array_equal(
            pnr, np.r_[6, 11, 10,  8,  1,  4,  7,  0,  2,  9,  5,  3, 12])
    def test_two_cameras(self):
        ori_tmpl = "testing_fodder/calibration/sym_cam{cam_num}.tif.ori"
        add_file = "testing_fodder/calibration/cam1.tif.addpar"

        orig_cal = Calibration()
        orig_cal.from_file(
            ori_tmpl.format(cam_num=1).encode(), add_file.encode())
        proj_cal = Calibration()
        proj_cal.from_file(
            ori_tmpl.format(cam_num=3).encode(), add_file.encode())

        # reorient cams:
        orig_cal.set_angles(np.r_[0., -np.pi / 4., 0.])
        proj_cal.set_angles(np.r_[0., 3 * np.pi / 4., 0.])

        cpar = ControlParams(4)
        cpar.read_control_par(b"testing_fodder/corresp/control.par")
        sens_size = cpar.get_image_size()

        vpar = VolumeParams()
        vpar.read_volume_par(b"testing_fodder/corresp/criteria.par")
        vpar.set_Zmin_lay([-10, -10])
        vpar.set_Zmax_lay([10, 10])

        mult_params = cpar.get_multimedia_params()
        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # Central point translates to central point because cameras point
        # directly at each other.
        mid = np.r_[sens_size] / 2.
        line = epipolar_curve(mid, orig_cal, proj_cal, 5, cpar, vpar)
        self.failUnless(np.all(abs(line - mid) < 1e-6))

        # An equatorial point draws a latitude.
        line = epipolar_curve(mid - np.r_[100., 0.], orig_cal, proj_cal, 5,
                              cpar, vpar)
        np.testing.assert_array_equal(np.argsort(line[:, 0]),
                                      np.arange(5)[::-1])
        self.failUnless(np.all(abs(line[:, 1] - mid[1]) < 1e-6))
Пример #14
0
    def setUp(self):
        with open("testing_fodder/track/conf.yaml") as f:
            yaml_conf = yaml.load(f)
        seq_cfg = yaml_conf['sequence']

        cals = []
        img_base = []
        for cix, cam_spec in enumerate(yaml_conf['cameras']):
            cam_spec.setdefault('addpar_file', None)
            cal = Calibration()
            cal.from_file(cam_spec['ori_file'], cam_spec['addpar_file'])
            cals.append(cal)
            img_base.append(seq_cfg['targets_template'].format(cam=cix + 1))

        cpar = ControlParams(len(yaml_conf['cameras']), **yaml_conf['scene'])
        vpar = VolumeParams(**yaml_conf['correspondences'])
        tpar = TrackingParams(**yaml_conf['tracking'])
        spar = SequenceParams(image_base=img_base,
                              frame_range=(seq_cfg['first'], seq_cfg['last']))

        self.tracker = Tracker(cpar, vpar, tpar, spar, cals, framebuf_naming)
Пример #15
0
 def setUp(self):
     with open("testing_fodder/track/conf.yaml") as f:
         yaml_conf = yaml.load(f)
     seq_cfg = yaml_conf['sequence']
     
     cals = []
     img_base = []
     for cix, cam_spec in enumerate(yaml_conf['cameras']):
         cam_spec.setdefault('addpar_file', None)
         cal = Calibration()
         cal.from_file(cam_spec['ori_file'], cam_spec['addpar_file'])
         cals.append(cal)
         img_base.append(seq_cfg['targets_template'].format(cam=cix + 1))
         
     cpar = ControlParams(len(yaml_conf['cameras']), **yaml_conf['scene'])
     vpar = VolumeParams(**yaml_conf['correspondences'])
     tpar = TrackingParams(**yaml_conf['tracking'])
     spar = SequenceParams(
         image_base=img_base,
         frame_range=(seq_cfg['first'], seq_cfg['last']))
     
     self.tracker = Tracker(cpar, vpar, tpar, spar, cals, framebuf_naming)
Пример #16
0
 def test_two_cameras(self):
     ori_tmpl = "testing_fodder/calibration/sym_cam{cam_num}.tif.ori"
     add_file = "testing_fodder/calibration/cam1.tif.addpar"
     
     orig_cal = Calibration()
     orig_cal.from_file(ori_tmpl.format(cam_num=1).encode(), add_file.encode())
     proj_cal = Calibration()
     proj_cal.from_file(ori_tmpl.format(cam_num=3).encode(), add_file.encode())
     
     # reorient cams:
     orig_cal.set_angles(np.r_[0., -np.pi/4., 0.])
     proj_cal.set_angles(np.r_[0., 3*np.pi/4., 0.])
     
     cpar = ControlParams(4)
     cpar.read_control_par(b"testing_fodder/corresp/control.par")
     sens_size = cpar.get_image_size()
     
     vpar = VolumeParams()
     vpar.read_volume_par(b"testing_fodder/corresp/criteria.par")
     vpar.set_Zmin_lay([-10, -10])
     vpar.set_Zmax_lay([10, 10])
     
     mult_params = cpar.get_multimedia_params()
     mult_params.set_n1(1.)
     mult_params.set_layers(np.array([1.]), np.array([1.]))
     mult_params.set_n3(1.)
     
     # Central point translates to central point because cameras point 
     # directly at each other.
     mid = np.r_[sens_size]/2.
     line = epipolar_curve(mid, orig_cal, proj_cal, 5, cpar, vpar)
     self.failUnless(np.all(abs(line - mid) < 1e-6))
     
     # An equatorial point draws a latitude.
     line = epipolar_curve(
         mid - np.r_[100., 0.], orig_cal, proj_cal, 5, cpar, vpar)
     np.testing.assert_array_equal(np.argsort(line[:,0]), np.arange(5)[::-1])
     self.failUnless(np.all(abs(line[:,1] - mid[1]) < 1e-6))
Пример #17
0
def py_determination_proc_c(n_cams, sorted_pos, sorted_corresp, corrected):
    """ Returns 3d positions """

    # Control parameters
    cpar = ControlParams(n_cams)
    cpar.read_control_par('parameters/ptv.par')

    # Volume parameters
    vpar = VolumeParams()
    vpar.read_volume_par('parameters/criteria.par')

    cals = []
    for i_cam in xrange(n_cams):
        cal = Calibration()
        tmp = cpar.get_cal_img_base_name(i_cam)
        cal.from_file(tmp + '.ori', tmp + '.addpar')
        cals.append(cal)

    # Distinction between quad/trip irrelevant here.
    sorted_pos = np.concatenate(sorted_pos, axis=1)
    sorted_corresp = np.concatenate(sorted_corresp, axis=1)


    flat = np.array([corrected[i].get_by_pnrs(sorted_corresp[i]) \
                     for i in xrange(len(cals))])
    pos, rcm = point_positions(flat.transpose(1, 0, 2), cpar, cals, vpar)

    if len(cals) == 1:  # single camera case
        sorted_corresp = np.tile(sorted_corresp, (4, 1))
        sorted_corresp[1:, :] = -1

    # Save rt_is in a temporary file
    frame = 123456789  # just a temporary workaround. todo: think how to write
    with open(default_naming['corres'] + '.' + str(frame), 'w') as rt_is:
        rt_is.write(str(pos.shape[0]) + '\n')
        for pix, pt in enumerate(pos):
            pt_args = (pix + 1, ) + tuple(pt) + tuple(sorted_corresp[:, pix])
            rt_is.write("%4d %9.3f %9.3f %9.3f %4d %4d %4d %4d\n" % pt_args)
Пример #18
0
def py_start_proc_c(n_cams):
    """ Read parameters """

    # Control parameters
    cpar = ControlParams(n_cams)
    cpar.read_control_par(b'parameters/ptv.par')

    # Sequence parameters
    spar = SequenceParams(num_cams=n_cams)
    spar.read_sequence_par(b'parameters/sequence.par', n_cams)

    # Volume parameters
    vpar = VolumeParams()
    vpar.read_volume_par(b'parameters/criteria.par')

    # Tracking parameters
    track_par = TrackingParams()
    track_par.read_track_par(b'parameters/track.par')

    # Target parameters
    tpar = TargetParams(n_cams)
    tpar.read(b'parameters/targ_rec.par')

    # Examine parameters, multiplane (single plane vs combined calibration)
    epar = par.ExamineParams()
    epar.read()

    # Calibration parameters
    cals = []
    for i_cam in range(n_cams):
        cal = Calibration()
        tmp = cpar.get_cal_img_base_name(i_cam)
        cal.from_file(tmp + b'.ori', tmp + b'.addpar')
        cals.append(cal)

    return cpar, spar, vpar, track_par, tpar, cals, epar
Пример #19
0
class Test_Calibration(unittest.TestCase):
    def setUp(self):        
        self.input_ori_file_name = "testing_fodder/calibration/cam1.tif.ori"
        self.input_add_file_name = "testing_fodder/calibration/cam2.tif.addpar"
        self.output_directory = "testing_fodder/calibration/testing_output/"
        
        # create a temporary output directory (will be deleted by the end of test)
        if not os.path.exists(self.output_directory):
            os.makedirs(self.output_directory)
            
        # create an instance of Calibration wrapper class
        self.cal = Calibration()
            
    def test_Calibration_instantiation(self):
        """Filling a calibration object by reading ori files"""
        self.output_ori_file_name = self.output_directory + "output_ori"
        self.output_add_file_name = self.output_directory + "output_add"
                
        # Using a round-trip test.
        self.cal.from_file(self.input_ori_file_name, self.input_add_file_name)
        self.cal.write(self.output_ori_file_name, self.output_add_file_name)
        
        self.assertTrue(filecmp.cmp(self.input_ori_file_name, self.output_ori_file_name, 0))
        self.assertTrue(filecmp.cmp(self.input_add_file_name, self.output_add_file_name, 0))
        
    def test_set_pos(self):
        """Set exterior position, only for admissible values"""
        # test set_pos() by passing a numpy array of 3 elements
        new_np = numpy.array([111.1111, 222.2222, 333.3333])
        self.cal.set_pos(new_np)

        # test getting position and assert that position is equal to set position
        numpy.testing.assert_array_equal(new_np, self.cal.get_pos())
        
        # assert set_pos() raises ValueError exception when given more or less than 3 elements 
        self.assertRaises(ValueError, self.cal.set_pos, numpy.array([1, 2, 3, 4]))
        self.assertRaises(ValueError, self.cal.set_pos, numpy.array([1, 2]))
    
    def test_set_angles(self):
        """set angles correctly"""
        dmatrix_before = self.cal.get_rotation_matrix()  # dmatrix before setting angles
        angles_np = numpy.array([0.1111, 0.2222, 0.3333])
        self.cal.set_angles(angles_np)
        
        dmatrix_after = self.cal.get_rotation_matrix()  # dmatrix after setting angles
        numpy.testing.assert_array_equal(self.cal.get_angles(), angles_np)
        
        # assert dmatrix was recalculated (before vs after)
        self.assertFalse(numpy.array_equal(dmatrix_before, dmatrix_after))
        
        self.assertRaises(ValueError, self.cal.set_angles, numpy.array([1, 2, 3, 4]))
        self.assertRaises(ValueError, self.cal.set_angles, numpy.array([1, 2]))
    
    def tearDown(self):
        # remove the testing output directory and its files
        shutil.rmtree(self.output_directory)
        
    def test_set_primary(self):
        """Set primary point (interior) position, only for admissible values"""
        new_pp = numpy.array([111.1111, 222.2222, 333.3333])
        self.cal.set_primary_point(new_pp)

        numpy.testing.assert_array_equal(new_pp, self.cal.get_primary_point())
        self.assertRaises(ValueError, self.cal.set_primary_point, numpy.ones(4))
        self.assertRaises(ValueError, self.cal.set_primary_point, numpy.ones(2))
    
    def test_set_radial(self):
        """Set radial distortion, only for admissible values"""
        new_rd = numpy.array([111.1111, 222.2222, 333.3333])
        self.cal.set_radial_distortion(new_rd)

        numpy.testing.assert_array_equal(new_rd, 
            self.cal.get_radial_distortion())
        self.assertRaises(ValueError, self.cal.set_radial_distortion, 
            numpy.ones(4))
        self.assertRaises(ValueError, self.cal.set_radial_distortion,
            numpy.ones(2))
    
    def test_set_decentering(self):
        """Set radial distortion, only for admissible values"""
        new_de = numpy.array([111.1111, 222.2222])
        self.cal.set_decentering(new_de)

        numpy.testing.assert_array_equal(new_de, self.cal.get_decentering())
        self.assertRaises(ValueError, self.cal.set_decentering, numpy.ones(3))
        self.assertRaises(ValueError, self.cal.set_decentering, numpy.ones(1))
    
    def test_set_glass(self):
        """Set glass vector, only for admissible values"""
        new_gv = numpy.array([1., 2., 3.])
        self.cal.set_glass_vec(new_gv)

        numpy.testing.assert_array_equal(new_gv, self.cal.get_glass_vec())
        self.assertRaises(ValueError, self.cal.set_glass_vec, numpy.ones(2))
        self.assertRaises(ValueError, self.cal.set_glass_vec, numpy.ones(1))
Пример #20
0
class Test_Orientation(unittest.TestCase):
    def setUp(self):
        self.input_ori_file_name = r'testing_fodder/calibration/cam1.tif.ori'
        self.input_add_file_name = r'testing_fodder/calibration/cam2.tif.addpar'
        self.control_file_name = r'testing_fodder/control_parameters/control.par'

        self.calibration = Calibration()
        self.calibration.from_file(
            self.input_ori_file_name, self.input_add_file_name)
        self.control = ControlParams(4)
        self.control.read_control_par(self.control_file_name)

    def test_match_detection_to_ref(self):
        """Match detection to reference (sortgrid)"""
        xyz_input = np.array([(10, 10, 10),
                              (200, 200, 200),
                              (600, 800, 100),
                              (20, 10, 2000),
                              (30, 30, 30)], dtype=float)
        coords_count = len(xyz_input)

        xy_img_pts_metric = image_coordinates(
            xyz_input, self.calibration, self.control.get_multimedia_params())
        xy_img_pts_pixel = convert_arr_metric_to_pixel(
            xy_img_pts_metric, control=self.control)

        # convert to TargetArray object
        target_array = TargetArray(coords_count)

        for i in range(coords_count):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(
                (xy_img_pts_pixel[i][0], xy_img_pts_pixel[i][1]))

        # create randomized target array
        indices = range(coords_count)
        shuffled_indices = range(coords_count)

        while indices == shuffled_indices:
            random.shuffle(shuffled_indices)

        rand_targ_array = TargetArray(coords_count)
        for i in range(coords_count):
            rand_targ_array[shuffled_indices[i]].set_pos(target_array[i].pos())
            rand_targ_array[shuffled_indices[i]].set_pnr(target_array[i].pnr())

        # match detection to reference
        matched_target_array = match_detection_to_ref(cal=self.calibration,
                                                      ref_pts=xyz_input,
                                                      img_pts=rand_targ_array,
                                                      cparam=self.control)

        # assert target array is as before
        for i in range(coords_count):
            if matched_target_array[i].pos() != target_array[i].pos() \
                    or matched_target_array[i].pnr() != target_array[i].pnr():
                self.fail()

        # pass ref_pts and img_pts with non-equal lengths
        with self.assertRaises(ValueError):
            match_detection_to_ref(cal=self.calibration,
                                   ref_pts=xyz_input,
                                   img_pts=TargetArray(coords_count - 1),
                                   cparam=self.control)

    def test_point_positions(self):
        """Point positions"""
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()

        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17, 42, 0],
                           [17, 42, 0]], dtype=float)
        
        num_cams = 4
        ori_tmpl = r'testing_fodder/calibration/sym_cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []
        targs_jigged = []

        jigg_amp = 0.5

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)
            
            if (cam_num % 2) == 0:
                jigged_points = points - np.r_[0, jigg_amp, 0]
            else:
                jigged_points = points + np.r_[0, jigg_amp, 0]

            new_jigged_targs = image_coordinates(
                jigged_points, cam_cal, self.control.get_multimedia_params())
            targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1,0,2)
        targs_jigged = np.array(targs_jigged).transpose(1,0,2)
        skew_dist_plain = point_positions(targs_plain, self.control, calibs)
        skew_dist_jigged = point_positions(targs_jigged, self.control, calibs)

        if np.any(skew_dist_plain[1] > 1e-10):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_plain[1] > 1e-10)[0][0]))

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(skew_dist_jigged[1] > 0.7):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_jigged[1] > 1e-10)[0][0]))
        if np.any(np.linalg.norm(points - skew_dist_jigged[0], axis=1) > 0.1):
            self.fail('Rays converge on wrong position after jigging.')
    
    def test_dumbbell(self):
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()
        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17.5, 42, 0],
                           [-17.5, 42, 0]], dtype=float)
        
        num_cams = 4
        ori_tmpl = r'testing_fodder/dumbbell/cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = flat_image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)

        targs_plain = np.array(targs_plain).transpose(1,0,2)
        
        # The cameras are not actually fully calibrated, so the result is not 
        # an exact 0. The test is that changing the expected distance changes 
        # the measure.
        tf = dumbbell_target_func(targs_plain, self.control, calibs, 35., 0.)
        self.assertAlmostEqual(tf, 7.14860, 5) # just a regression test
        
        # As we check the db length, the measure increases...
        tf_len = dumbbell_target_func(
            targs_plain, self.control, calibs, 35., 1.)
        self.assertTrue(tf_len > tf)
        
        # ...but not as much as when giving the wrong length.
        tf_too_long = dumbbell_target_func(
            targs_plain, self.control, calibs, 25., 1.)
        self.assertTrue(tf_too_long > tf_len > tf)
Пример #21
0
    def test_point_positions(self):
        """Point positions"""
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()

        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17, 42, 0], [17, 42, 0]], dtype=float)

        num_cams = 4
        ori_tmpl = r'testing_fodder/calibration/sym_cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []
        targs_jigged = []

        jigg_amp = 0.5

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)

            if (cam_num % 2) == 0:
                jigged_points = points - np.r_[0, jigg_amp, 0]
            else:
                jigged_points = points + np.r_[0, jigg_amp, 0]

            new_jigged_targs = image_coordinates(
                jigged_points, cam_cal, self.control.get_multimedia_params())
            targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1, 0, 2)
        targs_jigged = np.array(targs_jigged).transpose(1, 0, 2)
        skew_dist_plain = point_positions(targs_plain, self.control, calibs)
        skew_dist_jigged = point_positions(targs_jigged, self.control, calibs)

        if np.any(skew_dist_plain[1] > 1e-10):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_plain[1] > 1e-10)[0][0]))

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(skew_dist_jigged[1] > 0.7):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_jigged[1] > 1e-10)[0][0]))
        if np.any(np.linalg.norm(points - skew_dist_jigged[0], axis=1) > 0.1):
            self.fail('Rays converge on wrong position after jigging.')
Пример #22
0
class TestGradientDescent(unittest.TestCase):
    # Based on the C tests in liboptv/tests/check_orientation.c

    def setUp(self):
        control_file_name = r'testing_fodder/corresp/control.par'
        self.control = ControlParams(4)
        self.control.read_control_par(control_file_name)

        self.cal = Calibration()
        self.cal.from_file("testing_fodder/calibration/cam1.tif.ori",
                           "testing_fodder/calibration/cam1.tif.addpar")
        self.orig_cal = Calibration()
        self.orig_cal.from_file("testing_fodder/calibration/cam1.tif.ori",
                                "testing_fodder/calibration/cam1.tif.addpar")

    def test_external_calibration(self):
        """External calibration using clicked points."""
        ref_pts = np.array([[-40., -25., 8.], [40., -15., 0.], [40., 15., 0.],
                            [40., 0., 8.]])

        # Fake the image points by back-projection
        targets = convert_arr_metric_to_pixel(
            image_coordinates(ref_pts, self.cal,
                              self.control.get_multimedia_params()),
            self.control)

        # Jigg the fake detections to give raw_orient some challenge.
        targets[:, 1] -= 0.1

        self.assertTrue(
            external_calibration(self.cal, ref_pts, targets, self.control))
        np.testing.assert_array_almost_equal(self.cal.get_angles(),
                                             self.orig_cal.get_angles(),
                                             decimal=4)
        np.testing.assert_array_almost_equal(self.cal.get_pos(),
                                             self.orig_cal.get_pos(),
                                             decimal=3)

    def test_full_calibration(self):
        ref_pts = np.array([
            a.flatten() for a in np.meshgrid(np.r_[-60:-30:4j], np.r_[0:15:4j],
                                             np.r_[0:15:4j])
        ]).T

        # Fake the image points by back-projection
        targets = convert_arr_metric_to_pixel(
            image_coordinates(ref_pts, self.cal,
                              self.control.get_multimedia_params()),
            self.control)

        # Full calibration works with TargetArray objects, not NumPy.
        target_array = TargetArray(len(targets))
        for i in xrange(len(targets)):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(targets[i])

        # Perturb the calibration object, then compore result to original.
        self.cal.set_pos(self.cal.get_pos() + np.r_[15., -15., 15.])
        self.cal.set_angles(self.cal.get_angles() + np.r_[-.5, .5, -.5])

        ret, used, err_est = full_calibration(self.cal, ref_pts, target_array,
                                              self.control)

        np.testing.assert_array_almost_equal(self.cal.get_angles(),
                                             self.orig_cal.get_angles(),
                                             decimal=4)
        np.testing.assert_array_almost_equal(self.cal.get_pos(),
                                             self.orig_cal.get_pos(),
                                             decimal=3)
Пример #23
0
class Test_Orientation(unittest.TestCase):
    def setUp(self):
        self.input_ori_file_name = r'testing_fodder/calibration/cam1.tif.ori'
        self.input_add_file_name = r'testing_fodder/calibration/cam2.tif.addpar'
        self.control_file_name = r'testing_fodder/control_parameters/control.par'

        self.calibration = Calibration()
        self.calibration.from_file(self.input_ori_file_name,
                                   self.input_add_file_name)
        self.control = ControlParams(4)
        self.control.read_control_par(self.control_file_name)

    def test_match_detection_to_ref(self):
        """Match detection to reference (sortgrid)"""
        xyz_input = np.array([(10, 10, 10), (200, 200, 200), (600, 800, 100),
                              (20, 10, 2000), (30, 30, 30)],
                             dtype=float)
        coords_count = len(xyz_input)

        xy_img_pts_metric = image_coordinates(
            xyz_input, self.calibration, self.control.get_multimedia_params())
        xy_img_pts_pixel = convert_arr_metric_to_pixel(xy_img_pts_metric,
                                                       control=self.control)

        # convert to TargetArray object
        target_array = TargetArray(coords_count)

        for i in range(coords_count):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(
                (xy_img_pts_pixel[i][0], xy_img_pts_pixel[i][1]))

        # create randomized target array
        indices = range(coords_count)
        shuffled_indices = range(coords_count)

        while indices == shuffled_indices:
            random.shuffle(shuffled_indices)

        rand_targ_array = TargetArray(coords_count)
        for i in range(coords_count):
            rand_targ_array[shuffled_indices[i]].set_pos(target_array[i].pos())
            rand_targ_array[shuffled_indices[i]].set_pnr(target_array[i].pnr())

        # match detection to reference
        matched_target_array = match_detection_to_ref(cal=self.calibration,
                                                      ref_pts=xyz_input,
                                                      img_pts=rand_targ_array,
                                                      cparam=self.control)

        # assert target array is as before
        for i in range(coords_count):
            if matched_target_array[i].pos() != target_array[i].pos() \
                    or matched_target_array[i].pnr() != target_array[i].pnr():
                self.fail()

        # pass ref_pts and img_pts with non-equal lengths
        with self.assertRaises(ValueError):
            match_detection_to_ref(cal=self.calibration,
                                   ref_pts=xyz_input,
                                   img_pts=TargetArray(coords_count - 1),
                                   cparam=self.control)

    def test_point_positions(self):
        """Point positions"""
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()

        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17, 42, 0], [17, 42, 0]], dtype=float)

        num_cams = 4
        ori_tmpl = r'testing_fodder/calibration/sym_cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []
        targs_jigged = []

        jigg_amp = 0.5

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)

            if (cam_num % 2) == 0:
                jigged_points = points - np.r_[0, jigg_amp, 0]
            else:
                jigged_points = points + np.r_[0, jigg_amp, 0]

            new_jigged_targs = image_coordinates(
                jigged_points, cam_cal, self.control.get_multimedia_params())
            targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1, 0, 2)
        targs_jigged = np.array(targs_jigged).transpose(1, 0, 2)
        skew_dist_plain = point_positions(targs_plain, self.control, calibs)
        skew_dist_jigged = point_positions(targs_jigged, self.control, calibs)

        if np.any(skew_dist_plain[1] > 1e-10):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_plain[1] > 1e-10)[0][0]))

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(skew_dist_jigged[1] > 0.7):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_jigged[1] > 1e-10)[0][0]))
        if np.any(np.linalg.norm(points - skew_dist_jigged[0], axis=1) > 0.1):
            self.fail('Rays converge on wrong position after jigging.')

    def test_dumbbell(self):
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()
        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17.5, 42, 0], [-17.5, 42, 0]], dtype=float)

        num_cams = 4
        ori_tmpl = r'testing_fodder/dumbbell/cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = flat_image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)

        targs_plain = np.array(targs_plain).transpose(1, 0, 2)

        # The cameras are not actually fully calibrated, so the result is not
        # an exact 0. The test is that changing the expected distance changes
        # the measure.
        tf = dumbbell_target_func(targs_plain, self.control, calibs, 35., 0.)
        self.assertAlmostEqual(tf, 7.14860, 5)  # just a regression test

        # As we check the db length, the measure increases...
        tf_len = dumbbell_target_func(targs_plain, self.control, calibs, 35.,
                                      1.)
        self.assertTrue(tf_len > tf)

        # ...but not as much as when giving the wrong length.
        tf_too_long = dumbbell_target_func(targs_plain, self.control, calibs,
                                           25., 1.)
        self.assertTrue(tf_too_long > tf_len > tf)
class Test_Calibration(unittest.TestCase):
    def setUp(self):        
        self.input_ori_file_name = b"testing_fodder/calibration/cam1.tif.ori"
        self.input_add_file_name = b"testing_fodder/calibration/cam2.tif.addpar"
        self.output_directory = b"testing_fodder/calibration/testing_output/"
        
        # create a temporary output directory (will be deleted by the end of test)
        if not os.path.exists(self.output_directory):
            os.makedirs(self.output_directory)
            
        # create an instance of Calibration wrapper class
        self.cal = Calibration()
            
    def test_full_instantiate(self):
        pos = numpy.r_[1., 3., 5.]
        angs = numpy.r_[2., 4., 6.]
        prim_point = pos * 3
        rad_dist = pos * 4
        decent = pos[:2] * 5
        affine = decent * 1.5
        glass = pos * 7
        
        cal = Calibration(pos, angs, prim_point, rad_dist, decent, affine, 
            glass)
        
        numpy.testing.assert_array_equal(pos, cal.get_pos())
        numpy.testing.assert_array_equal(angs, cal.get_angles())
        numpy.testing.assert_array_equal(prim_point, cal.get_primary_point())
        numpy.testing.assert_array_equal(rad_dist, cal.get_radial_distortion())
        numpy.testing.assert_array_equal(decent, cal.get_decentering())
        numpy.testing.assert_array_equal(affine, cal.get_affine())
        numpy.testing.assert_array_equal(glass, cal.get_glass_vec())
        
    def test_Calibration_instantiation(self):
        """Filling a calibration object by reading ori files"""
        self.output_ori_file_name = self.output_directory + b"output_ori"
        self.output_add_file_name = self.output_directory + b"output_add"
                
        # Using a round-trip test.
        self.cal.from_file(self.input_ori_file_name, self.input_add_file_name)
        self.cal.write(self.output_ori_file_name, self.output_add_file_name)
        
        self.assertTrue(filecmp.cmp(self.input_ori_file_name, self.output_ori_file_name, 0))
        self.assertTrue(filecmp.cmp(self.input_add_file_name, self.output_add_file_name, 0))
        
    def test_set_pos(self):
        """Set exterior position, only for admissible values"""
        # test set_pos() by passing a numpy array of 3 elements
        new_np = numpy.array([111.1111, 222.2222, 333.3333])
        self.cal.set_pos(new_np)

        # test getting position and assert that position is equal to set position
        numpy.testing.assert_array_equal(new_np, self.cal.get_pos())
        
        # assert set_pos() raises ValueError exception when given more or less than 3 elements 
        self.assertRaises(ValueError, self.cal.set_pos, numpy.array([1, 2, 3, 4]))
        self.assertRaises(ValueError, self.cal.set_pos, numpy.array([1, 2]))
    
    def test_set_angles(self):
        """set angles correctly"""
        dmatrix_before = self.cal.get_rotation_matrix()  # dmatrix before setting angles
        angles_np = numpy.array([0.1111, 0.2222, 0.3333])
        self.cal.set_angles(angles_np)
        
        dmatrix_after = self.cal.get_rotation_matrix()  # dmatrix after setting angles
        numpy.testing.assert_array_equal(self.cal.get_angles(), angles_np)
        
        # assert dmatrix was recalculated (before vs after)
        self.assertFalse(numpy.array_equal(dmatrix_before, dmatrix_after))
        
        self.assertRaises(ValueError, self.cal.set_angles, numpy.array([1, 2, 3, 4]))
        self.assertRaises(ValueError, self.cal.set_angles, numpy.array([1, 2]))
    
    def tearDown(self):
        # remove the testing output directory and its files
        shutil.rmtree(self.output_directory)
        
    def test_set_primary(self):
        """Set primary point (interior) position, only for admissible values"""
        new_pp = numpy.array([111.1111, 222.2222, 333.3333])
        self.cal.set_primary_point(new_pp)

        numpy.testing.assert_array_equal(new_pp, self.cal.get_primary_point())
        self.assertRaises(ValueError, self.cal.set_primary_point, numpy.ones(4))
        self.assertRaises(ValueError, self.cal.set_primary_point, numpy.ones(2))
    
    def test_set_radial(self):
        """Set radial distortion, only for admissible values"""
        new_rd = numpy.array([111.1111, 222.2222, 333.3333])
        self.cal.set_radial_distortion(new_rd)

        numpy.testing.assert_array_equal(new_rd, 
            self.cal.get_radial_distortion())
        self.assertRaises(ValueError, self.cal.set_radial_distortion, 
            numpy.ones(4))
        self.assertRaises(ValueError, self.cal.set_radial_distortion,
            numpy.ones(2))
    
    def test_set_decentering(self):
        """Set radial distortion, only for admissible values"""
        new_de = numpy.array([111.1111, 222.2222])
        self.cal.set_decentering(new_de)

        numpy.testing.assert_array_equal(new_de, self.cal.get_decentering())
        self.assertRaises(ValueError, self.cal.set_decentering, numpy.ones(3))
        self.assertRaises(ValueError, self.cal.set_decentering, numpy.ones(1))
    
    def test_set_glass(self):
        """Set glass vector, only for admissible values"""
        new_gv = numpy.array([1., 2., 3.])
        self.cal.set_glass_vec(new_gv)

        numpy.testing.assert_array_equal(new_gv, self.cal.get_glass_vec())
        self.assertRaises(ValueError, self.cal.set_glass_vec, numpy.ones(2))
        self.assertRaises(ValueError, self.cal.set_glass_vec, numpy.ones(1))
Пример #25
0
class Test_transforms(unittest.TestCase):
    def setUp(self):
        self.input_control_par_file_name = "testing_fodder/control_parameters/control.par"
        self.control = ControlParams(4)
        self.control.read_control_par(self.input_control_par_file_name)

        self.input_ori_file_name = "testing_fodder/calibration/cam1.tif.ori"
        self.input_add_file_name = "testing_fodder/calibration/cam2.tif.addpar"

        self.calibration = Calibration()
        self.calibration.from_file(self.input_ori_file_name,
                                   self.input_add_file_name)

    def test_transforms_typecheck(self):
        """Transform bindings check types"""
        # Assert TypeError is raised when passing a non (n,2) shaped numpy ndarray
        with self.assertRaises(TypeError):
            list = [[0 for x in range(2)] for x in range(10)
                    ]  # initialize a 10x2 list (but not numpy matrix)
            convert_arr_pixel_to_metric(list, self.control, out=None)
        with self.assertRaises(TypeError):
            convert_arr_pixel_to_metric(np.empty((10, 3)),
                                        self.control,
                                        out=None)
        with self.assertRaises(TypeError):
            convert_arr_metric_to_pixel(np.empty((2, 1)),
                                        self.control,
                                        out=None)
        with self.assertRaises(TypeError):
            convert_arr_metric_to_pixel(np.zeros((11, 2)),
                                        self.control,
                                        out=np.zeros((12, 2)))

    def test_transforms_regress(self):
        """Transformed values are as before."""
        input = np.full((3, 2), 100.)
        output = np.zeros((3, 2))
        correct_output_pixel_to_metric = [[-8181., 6657.92], [-8181., 6657.92],
                                          [-8181., 6657.92]]
        correct_output_metric_to_pixel = [[646.60066007, 505.81188119],
                                          [646.60066007, 505.81188119],
                                          [646.60066007, 505.81188119]]

        # Test when passing an array for output
        convert_arr_pixel_to_metric(input, self.control, out=output)
        np.testing.assert_array_almost_equal(output,
                                             correct_output_pixel_to_metric,
                                             decimal=7)
        output = np.zeros((3, 2))
        convert_arr_metric_to_pixel(input, self.control, out=output)
        np.testing.assert_array_almost_equal(output,
                                             correct_output_metric_to_pixel,
                                             decimal=7)

        # Test when NOT passing an array for output
        output = convert_arr_pixel_to_metric(input, self.control, out=None)
        np.testing.assert_array_almost_equal(output,
                                             correct_output_pixel_to_metric,
                                             decimal=7)
        output = np.zeros((3, 2))
        output = convert_arr_metric_to_pixel(input, self.control, out=None)
        np.testing.assert_array_almost_equal(output,
                                             correct_output_metric_to_pixel,
                                             decimal=7)

    def test_transforms(self):
        """Transform in well-known setup gives precalculates results."""
        cpar = ControlParams(1)
        cpar.set_image_size((1280, 1000))
        cpar.set_pixel_size((0.1, 0.1))

        metric_pos = np.array([[1., 1.], [-10., 15.], [20., -30.]])
        pixel_pos = np.array([[650., 490.], [540., 350.], [840., 800.]])

        np.testing.assert_array_almost_equal(
            pixel_pos, convert_arr_metric_to_pixel(metric_pos, cpar))
        np.testing.assert_array_almost_equal(
            metric_pos, convert_arr_pixel_to_metric(pixel_pos, cpar))

    def test_brown_affine_types(self):
        # Assert TypeError is raised when passing a non (n,2) shaped numpy ndarray
        with self.assertRaises(TypeError):
            list = [[0 for x in range(2)] for x in range(10)
                    ]  # initialize a 10x2 list (but not numpy matrix)
            correct_arr_brown_affine(list, self.calibration, out=None)
        with self.assertRaises(TypeError):
            correct_arr_brown_affine(np.empty((10, 3)),
                                     self.calibration,
                                     out=None)
        with self.assertRaises(TypeError):
            distort_arr_brown_affine(np.empty((2, 1)),
                                     self.calibration,
                                     out=None)
        with self.assertRaises(TypeError):
            distort_arr_brown_affine(np.zeros((11, 2)),
                                     self.calibration,
                                     out=np.zeros((12, 2)))

    def test_brown_affine_regress(self):
        input = np.full((3, 2), 100.)
        output = np.zeros((3, 2))
        correct_output_corr = [[100., 100.], [100., 100.], [100., 100.]]
        correct_output_dist = [[100., 100.], [100., 100.], [100., 100.]]

        # Test when passing an array for output
        correct_arr_brown_affine(input, self.calibration, out=output)
        np.testing.assert_array_almost_equal(output,
                                             correct_output_corr,
                                             decimal=7)
        output = np.zeros((3, 2))
        distort_arr_brown_affine(input, self.calibration, out=output)
        np.testing.assert_array_almost_equal(output,
                                             correct_output_dist,
                                             decimal=7)

        # Test when NOT passing an array for output
        output = correct_arr_brown_affine(input, self.calibration, out=None)
        np.testing.assert_array_almost_equal(output,
                                             correct_output_corr,
                                             decimal=7)
        output = np.zeros((3, 2))
        output = distort_arr_brown_affine(input, self.calibration, out=None)
        np.testing.assert_array_almost_equal(output,
                                             correct_output_dist,
                                             decimal=7)

    def test_brown_affine(self):
        """Distortion and correction of pixel coordinates."""

        # This is all based on values from liboptv/tests/check_imgcoord.c
        cal = Calibration()
        cal.set_pos(np.r_[0., 0., 40.])
        cal.set_angles(np.r_[0., 0., 0.])
        cal.set_primary_point(np.r_[0., 0., 10.])
        cal.set_glass_vec(np.r_[0., 0., 20.])
        cal.set_radial_distortion(np.zeros(3))
        cal.set_decentering(np.zeros(2))
        cal.set_affine_trans(np.r_[1, 0])

        # reference metric positions:
        ref_pos = np.array([[0.1, 0.1], [1., -1.], [-10., 10.]])

        # Perfect camera: distortion = identity.
        distorted = distort_arr_brown_affine(ref_pos, cal)
        np.testing.assert_array_almost_equal(distorted, ref_pos)

        # Some small radial distortion:
        cal.set_radial_distortion(np.r_[0.001, 0., 0.])
        distorted = distort_arr_brown_affine(ref_pos, cal)
        self.failUnless(np.all(abs(distorted) > abs(ref_pos)))

    def test_full_correction(self):
        """Round trip distortion/correction."""
        # This is all based on values from liboptv/tests/check_imgcoord.c
        cal = Calibration()
        cal.set_pos(np.r_[0., 0., 40.])
        cal.set_angles(np.r_[0., 0., 0.])
        cal.set_primary_point(np.r_[0., 0., 10.])
        cal.set_glass_vec(np.r_[0., 0., 20.])
        cal.set_radial_distortion(np.zeros(3))
        cal.set_decentering(np.zeros(2))
        cal.set_affine_trans(np.r_[1, 0])

        # reference metric positions:
        # Note the last value is different than in test_brown_affine() because
        # the iteration does not converge for a point too far out.
        ref_pos = np.array([[0.1, 0.1], [1., -1.], [-5., 5.]])

        cal.set_radial_distortion(np.r_[0.001, 0., 0.])
        distorted = distort_arr_brown_affine(ref_pos, cal)
        corrected = distorted_to_flat(distorted,
                                      cal)  # default tight tolerance
        np.testing.assert_array_almost_equal(ref_pos, corrected, decimal=6)
Пример #26
0
class Test_transforms(unittest.TestCase):
    
    def setUp(self):
        self.input_control_par_file_name = b"testing_fodder/control_parameters/control.par"
        self.control = ControlParams(4)      
        self.control.read_control_par(self.input_control_par_file_name)
        
        self.input_ori_file_name = b"testing_fodder/calibration/cam1.tif.ori"
        self.input_add_file_name = b"testing_fodder/calibration/cam2.tif.addpar"
       
        self.calibration = Calibration()
        self.calibration.from_file(self.input_ori_file_name, self.input_add_file_name)
        
    def test_transforms_typecheck(self):
        """Transform bindings check types"""
        # Assert TypeError is raised when passing a non (n,2) shaped numpy ndarray
        with self.assertRaises(TypeError):
            list = [[0 for x in range(2)] for x in range(10)]  # initialize a 10x2 list (but not numpy matrix)
            convert_arr_pixel_to_metric(list, self.control, out=None)
        with self.assertRaises(TypeError):
            convert_arr_pixel_to_metric(np.empty((10, 3)), self.control, out=None)
        with self.assertRaises(TypeError):
            convert_arr_metric_to_pixel(np.empty((2, 1)), self.control, out=None)
        with self.assertRaises(TypeError):
            convert_arr_metric_to_pixel(np.zeros((11, 2)), self.control, out=np.zeros((12, 2)))

    def test_transforms_regress(self):
        """Transformed values are as before."""
        input = np.full((3, 2), 100.)
        output = np.zeros((3, 2))
        correct_output_pixel_to_metric = [[-8181.  ,  6657.92],
                                          [-8181.  ,  6657.92],
                                          [-8181.  ,  6657.92]]
        correct_output_metric_to_pixel= [[ 646.60066007,  505.81188119],
                                         [ 646.60066007,  505.81188119],
                                         [ 646.60066007,  505.81188119]]
        
        # Test when passing an array for output
        convert_arr_pixel_to_metric(input, self.control, out=output)
        np.testing.assert_array_almost_equal(output, correct_output_pixel_to_metric,decimal=7)
        output = np.zeros((3, 2))
        convert_arr_metric_to_pixel(input, self.control, out=output)
        np.testing.assert_array_almost_equal(output, correct_output_metric_to_pixel, decimal=7)
        
         # Test when NOT passing an array for output
        output=convert_arr_pixel_to_metric(input, self.control, out=None)
        np.testing.assert_array_almost_equal(output, correct_output_pixel_to_metric,decimal=7)
        output = np.zeros((3, 2))
        output=convert_arr_metric_to_pixel(input, self.control, out=None)
        np.testing.assert_array_almost_equal(output, correct_output_metric_to_pixel, decimal=7)
    
    def test_transforms(self):
        """Transform in well-known setup gives precalculates results."""
        cpar = ControlParams(1)
        cpar.set_image_size((1280, 1000))
        cpar.set_pixel_size((0.1, 0.1))
        
        metric_pos = np.array([
            [1., 1.],
            [-10., 15.],
            [20., -30.]
        ])
        pixel_pos = np.array([
            [650., 490.],
            [540., 350.],
            [840., 800.]
        ])
        
        np.testing.assert_array_almost_equal(pixel_pos, 
            convert_arr_metric_to_pixel(metric_pos, cpar))
        np.testing.assert_array_almost_equal(metric_pos, 
            convert_arr_pixel_to_metric(pixel_pos, cpar))
        
    def test_brown_affine_types(self):
        # Assert TypeError is raised when passing a non (n,2) shaped numpy ndarray
        with self.assertRaises(TypeError):
            list = [[0 for x in range(2)] for x in range(10)]  # initialize a 10x2 list (but not numpy matrix)
            correct_arr_brown_affine(list, self.calibration, out=None)
        with self.assertRaises(TypeError):
            correct_arr_brown_affine(np.empty((10, 3)), self.calibration, out=None)
        with self.assertRaises(TypeError):
            distort_arr_brown_affine(np.empty((2, 1)), self.calibration, out=None)
        with self.assertRaises(TypeError):
            distort_arr_brown_affine(np.zeros((11, 2)), self.calibration, out=np.zeros((12, 2)))
        
    def test_brown_affine_regress(self):
        input = np.full((3, 2), 100.)
        output = np.zeros((3, 2))
        correct_output_corr = [[ 100.,  100.],
                               [ 100.,  100.],
                               [ 100.,  100.]]
        correct_output_dist= [[ 100.,  100.],
                               [ 100.,  100.],
                               [ 100.,  100.]]
        
        # Test when passing an array for output
        correct_arr_brown_affine(input, self.calibration, out=output)
        np.testing.assert_array_almost_equal(output, correct_output_corr,decimal=7)
        output = np.zeros((3, 2))
        distort_arr_brown_affine(input, self.calibration, out=output)
        np.testing.assert_array_almost_equal(output, correct_output_dist, decimal=7)
        
         # Test when NOT passing an array for output
        output=correct_arr_brown_affine(input, self.calibration, out=None)
        np.testing.assert_array_almost_equal(output, correct_output_corr,decimal=7)
        output = np.zeros((3, 2))
        output=distort_arr_brown_affine(input, self.calibration, out=None)
        np.testing.assert_array_almost_equal(output, correct_output_dist, decimal=7)
    
    def test_brown_affine(self):
        """Distortion and correction of pixel coordinates."""
        
        # This is all based on values from liboptv/tests/check_imgcoord.c
        cal = Calibration()
        cal.set_pos(np.r_[0., 0., 40.])
        cal.set_angles(np.r_[0., 0., 0.])
        cal.set_primary_point(np.r_[0., 0., 10.])
        cal.set_glass_vec(np.r_[0., 0., 20.])
        cal.set_radial_distortion(np.zeros(3))
        cal.set_decentering(np.zeros(2))
        cal.set_affine_trans(np.r_[1, 0])
        
        # reference metric positions:
        ref_pos = np.array([
            [0.1, 0.1],
            [1., -1.],
            [-10., 10.]
        ])
        
        # Perfect camera: distortion = identity.
        distorted = distort_arr_brown_affine(ref_pos, cal)
        np.testing.assert_array_almost_equal(distorted, ref_pos)
        
        # Some small radial distortion:
        cal.set_radial_distortion(np.r_[0.001, 0., 0.])
        distorted = distort_arr_brown_affine(ref_pos, cal)
        self.failUnless(np.all(abs(distorted) > abs(ref_pos)))
    
    def test_full_correction(self):
        """Round trip distortion/correction."""
        # This is all based on values from liboptv/tests/check_imgcoord.c
        cal = Calibration()
        cal.set_pos(np.r_[0., 0., 40.])
        cal.set_angles(np.r_[0., 0., 0.])
        cal.set_primary_point(np.r_[0., 0., 10.])
        cal.set_glass_vec(np.r_[0., 0., 20.])
        cal.set_radial_distortion(np.zeros(3))
        cal.set_decentering(np.zeros(2))
        cal.set_affine_trans(np.r_[1, 0])
        
        # reference metric positions:
        # Note the last value is different than in test_brown_affine() because
        # the iteration does not converge for a point too far out.
        ref_pos = np.array([
            [0.1, 0.1],
            [1., -1.],
            [-5., 5.]
        ])
        
        cal.set_radial_distortion(np.r_[0.001, 0., 0.])
        distorted = distort_arr_brown_affine(ref_pos, cal)
        corrected = distorted_to_flat(distorted, cal) # default tight tolerance
        np.testing.assert_array_almost_equal(ref_pos, corrected, decimal=6)
Пример #27
0
    def test_point_positions(self):
        """Point positions"""
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()

        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17, 42, 0],
                           [17, 42, 0]], dtype=float)
        
        num_cams = 4
        ori_tmpl = r'testing_fodder/calibration/sym_cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []
        targs_jigged = []

        jigg_amp = 0.5

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)
            
            if (cam_num % 2) == 0:
                jigged_points = points - np.r_[0, jigg_amp, 0]
            else:
                jigged_points = points + np.r_[0, jigg_amp, 0]

            new_jigged_targs = image_coordinates(
                jigged_points, cam_cal, self.control.get_multimedia_params())
            targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1,0,2)
        targs_jigged = np.array(targs_jigged).transpose(1,0,2)
        skew_dist_plain = point_positions(targs_plain, self.control, calibs)
        skew_dist_jigged = point_positions(targs_jigged, self.control, calibs)

        if np.any(skew_dist_plain[1] > 1e-10):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_plain[1] > 1e-10)[0][0]))

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(skew_dist_jigged[1] > 0.7):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_jigged[1] > 1e-10)[0][0]))
        if np.any(np.linalg.norm(points - skew_dist_jigged[0], axis=1) > 0.1):
            self.fail('Rays converge on wrong position after jigging.')
Пример #28
0
def run_batch(new_seq_first, new_seq_last):
    """ this file runs inside exp_path, so the other names are
    prescribed by the OpenPTV type of a folder:
        /parameters
        /img
        /cal
        /res
    """
    # read the number of cameras
    with open('parameters/ptv.par', 'r') as f:
        n_cams = int(f.readline())

    # Control parameters
    cpar = ControlParams(n_cams)
    cpar.read_control_par(b'parameters/ptv.par')

    # Sequence parameters
    spar = SequenceParams(num_cams=n_cams)
    spar.read_sequence_par(b'parameters/sequence.par', n_cams)
    spar.set_first(new_seq_first)
    spar.set_last(new_seq_last)

    # Volume parameters
    vpar = VolumeParams()
    vpar.read_volume_par(b'parameters/criteria.par')

    # Tracking parameters
    track_par = TrackingParams()
    track_par.read_track_par(b'parameters/track.par')

    # Target parameters
    tpar = TargetParams()
    tpar.read(b'parameters/targ_rec.par')

    #

    # Calibration parameters

    cals = []
    for i_cam in range(n_cams):
        cal = Calibration()
        tmp = cpar.get_cal_img_base_name(i_cam)
        cal.from_file(tmp + b'.ori', tmp + b'.addpar')
        cals.append(cal)

    # sequence loop for all frames
    for frame in range(new_seq_first, new_seq_last + 1):
        print("processing frame %d" % frame)

        detections = []
        corrected = []
        for i_cam in range(n_cams):
            imname = spar.get_img_base_name(i_cam) + str(frame)
            img = imread(imname)
            hp = simple_highpass(img, cpar)
            targs = target_recognition(hp, tpar, i_cam, cpar)
            print(targs)

            targs.sort_y()
            detections.append(targs)
            mc = MatchedCoords(targs, cpar, cals[i_cam])
            pos, pnr = mc.as_arrays()
            print(i_cam)
            corrected.append(mc)

        #        if any([len(det) == 0 for det in detections]):
        #            return False

        # Corresp. + positions.
        sorted_pos, sorted_corresp, num_targs = correspondences(
            detections, corrected, cals, vpar, cpar)

        # Save targets only after they've been modified:
        for i_cam in xrange(n_cams):
            detections[i_cam].write(spar.get_img_base_name(i_cam), frame)


        print("Frame " + str(frame) + " had " \
              + repr([s.shape[1] for s in sorted_pos]) + " correspondences.")

        # Distinction between quad/trip irrelevant here.
        sorted_pos = np.concatenate(sorted_pos, axis=1)
        sorted_corresp = np.concatenate(sorted_corresp, axis=1)

        flat = np.array([corrected[i].get_by_pnrs(sorted_corresp[i]) \
                         for i in xrange(len(cals))])
        pos, rcm = point_positions(flat.transpose(1, 0, 2), cpar, cals, vpar)

        if len(cals) < 4:
            print_corresp = -1 * np.ones((4, sorted_corresp.shape[1]))
            print_corresp[:len(cals), :] = sorted_corresp
        else:
            print_corresp = sorted_corresp

        # Save rt_is
        rt_is = open(default_naming['corres'] + '.' + str(frame), 'w')
        rt_is.write(str(pos.shape[0]) + '\n')
        for pix, pt in enumerate(pos):
            pt_args = (pix + 1, ) + tuple(pt) + tuple(print_corresp[:, pix])
            rt_is.write("%4d %9.3f %9.3f %9.3f %4d %4d %4d %4d\n" % pt_args)
        rt_is.close()
    # end of a sequence loop

    tracker = Tracker(cpar, vpar, track_par, spar, cals, default_naming)
    tracker.full_forward()
Пример #29
0
num_cams = 3
num_frames = 5
velocity = 0.01

part_traject = np.zeros((num_frames,3))
part_traject[:,0] = np.r_[:num_frames]*velocity

# Find targets on each camera.
cpar = ControlParams(3)
cpar.read_control_par("testing_fodder/track/parameters/control_newpart.par")

targs = []
for cam in xrange(num_cams):
    cal = Calibration()
    cal.from_file(
        "testing_fodder/cal/sym_cam%d.tif.ori" % (cam + 1), 
        "testing_fodder/cal/cam1.tif.addpar")
    targs.append(convert_arr_metric_to_pixel(image_coordinates(
        part_traject, cal, cpar.get_multimedia_params()), cpar))

for frame in xrange(num_frames):
    # write 3D positions:
    with open("testing_fodder/track/res_orig/particles.%d" % (frame + 1), "w") as outfile:
        # Note correspondence to the single target in each frame.
        outfile.writelines([
            str(1) + "\n", 
            "{:5d}{:10.3f}{:10.3f}{:10.3f}{:5d}{:5d}{:5d}{:5d}\n".format(
                1, part_traject[frame,0], part_traject[frame,1], 
                part_traject[frame,1], 0, 0, 0, 0)]) 
    
    # write associated targets from all cameras:
Пример #30
0
class TestGradientDescent(unittest.TestCase):
    # Based on the C tests in liboptv/tests/check_orientation.c
    
    def setUp(self):
        control_file_name = r'testing_fodder/corresp/control.par'
        self.control = ControlParams(4)
        self.control.read_control_par(control_file_name)
        
        self.cal = Calibration()
        self.cal.from_file(
            "testing_fodder/calibration/cam1.tif.ori", 
            "testing_fodder/calibration/cam1.tif.addpar")
        self.orig_cal = Calibration()
        self.orig_cal.from_file(
            "testing_fodder/calibration/cam1.tif.ori", 
            "testing_fodder/calibration/cam1.tif.addpar")
    
    def test_external_calibration(self):
        """External calibration using clicked points."""
        ref_pts = np.array([
            [-40., -25., 8.],
            [ 40., -15., 0.],
            [ 40.,  15., 0.],
            [ 40.,   0., 8.]])
    
        # Fake the image points by back-projection
        targets = convert_arr_metric_to_pixel(image_coordinates(
            ref_pts, self.cal, self.control.get_multimedia_params()),
            self.control)
        
        # Jigg the fake detections to give raw_orient some challenge.
        targets[:,1] -= 0.1
        
        self.assertTrue(external_calibration(
            self.cal, ref_pts, targets, self.control))
        np.testing.assert_array_almost_equal(
            self.cal.get_angles(), self.orig_cal.get_angles(),
            decimal=4)
        np.testing.assert_array_almost_equal(
            self.cal.get_pos(), self.orig_cal.get_pos(),
            decimal=3)
    
    def test_full_calibration(self):
        ref_pts = np.array([a.flatten() for a in np.meshgrid(
            np.r_[-60:-30:4j], np.r_[0:15:4j], np.r_[0:15:4j])]).T
        
        # Fake the image points by back-projection
        targets = convert_arr_metric_to_pixel(image_coordinates(
            ref_pts, self.cal, self.control.get_multimedia_params()),
            self.control)
        
        # Full calibration works with TargetArray objects, not NumPy.
        target_array = TargetArray(len(targets))
        for i in xrange(len(targets)):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(targets[i])
        
        # Perturb the calibration object, then compore result to original.
        self.cal.set_pos(self.cal.get_pos() + np.r_[15., -15., 15.])
        self.cal.set_angles(self.cal.get_angles() + np.r_[-.5, .5, -.5])
        
        ret, used, err_est = full_calibration(
            self.cal, ref_pts, target_array, self.control)
        
        np.testing.assert_array_almost_equal(
            self.cal.get_angles(), self.orig_cal.get_angles(),
            decimal=4)
        np.testing.assert_array_almost_equal(
            self.cal.get_pos(), self.orig_cal.get_pos(),
            decimal=3)
Пример #31
0
num_cams = 3
num_frames = 5
velocity = 0.01

part_traject = np.zeros((num_frames, 3))
part_traject[:, 0] = np.r_[:num_frames] * velocity

# Find targets on each camera.
cpar = ControlParams(3)
cpar.read_control_par("testing_fodder/track/parameters/control_newpart.par")

targs = []
for cam in xrange(num_cams):
    cal = Calibration()
    cal.from_file("testing_fodder/cal/sym_cam%d.tif.ori" % (cam + 1),
                  "testing_fodder/cal/cam1.tif.addpar")
    targs.append(
        convert_arr_metric_to_pixel(
            image_coordinates(part_traject, cal, cpar.get_multimedia_params()),
            cpar))

for frame in xrange(num_frames):
    # write 3D positions:
    with open("testing_fodder/track/res_orig/particles.%d" % (frame + 1),
              "w") as outfile:
        # Note correspondence to the single target in each frame.
        outfile.writelines([
            str(1) + "\n",
            "{:5d}{:10.3f}{:10.3f}{:10.3f}{:5d}{:5d}{:5d}{:5d}\n".format(
                1, part_traject[frame, 0], part_traject[frame, 1],
                part_traject[frame, 1], 0, 0, 0, 0)