def test_index(self):
     a = np.array([1, 2, 3])
     v = values_to_linspace(a)
     iv = index_values(a, v)
     np.testing.assert_equal(iv, [0, 1, 2])
     a = np.array([1, 2, 3, 4])
     v = values_to_linspace(a)
     iv = index_values(a, v)
     np.testing.assert_equal(iv, [0, 1, 2, 3])
     a = np.array([1, 2, 3, 6, 5])
     v = values_to_linspace(a)
     iv = index_values(a, v)
     np.testing.assert_equal(iv, [0, 1, 2, 5, 4])
Пример #2
0
 def test_index(self):
     a = np.array([1, 2, 3])
     v = values_to_linspace(a)
     iv = index_values(a, v)
     np.testing.assert_equal(iv, [0, 1, 2])
     a = np.array([1, 2, 3, 4])
     v = values_to_linspace(a)
     iv = index_values(a, v)
     np.testing.assert_equal(iv, [0, 1, 2, 3])
     a = np.array([1, 2, 3, 6, 5])
     v = values_to_linspace(a)
     iv = index_values(a, v)
     np.testing.assert_equal(iv, [0, 1, 2, 5, 4])
    def update_view(self):
        self.img.clear()
        self.img.setSelection(None)
        self.lsx = None
        self.lsy = None
        self.wavenumbers = None
        self.data_xs = None
        self.data_imagepixels = None
        if self.data and len(self.data.domain.attributes):
            if self.attr_x is not None:
                xat = self.data.domain[self.attr_x]
                ndom = Domain([xat])
                datam = Table(ndom, self.data)
                coorx = datam.X[:, 0]
            else:
                coorx = np.arange(len(self.data))
            self.lsx = lsx = values_to_linspace(coorx)
            self.data_xs = coorx

            self.wavenumbers = wavenumbers = getx(self.data)
            self.lsy = lsy = values_to_linspace(wavenumbers)

            # set data
            imdata = np.ones((lsy[2], lsx[2])) * float("nan")
            xindex = index_values(coorx, lsx)
            yindex = index_values(wavenumbers, lsy)
            for xind, d in zip(xindex, self.data.X):
                imdata[yindex, xind] = d

            self.data_imagepixels = xindex

            self.img.setImage(imdata, autoLevels=False)
            self.img.setLevels([0, 1])
            self.update_levels()
            self.update_color_schema()

            # shift centres of the pixels so that the axes are useful
            shiftx = _shift(lsx)
            shifty = _shift(lsy)
            left = lsx[0] - shiftx
            bottom = lsy[0] - shifty
            width = (lsx[1]-lsx[0]) + 2*shiftx
            height = (lsy[1]-lsy[0]) + 2*shifty
            self.img.setRect(QRectF(left, bottom, width, height))

            self.refresh_img_selection()
    def update_view(self):
        self.img.clear()
        self.img.setSelection(None)
        self.legend.set_colors(None)
        self.lsx = None
        self.lsy = None
        self.wavenumbers = None
        self.data_xs = None
        self.data_imagepixels = None
        if self.data and len(self.data.domain.attributes):
            if self.attr_x is not None:
                xat = self.data.domain[self.attr_x]
                ndom = Domain([xat])
                datam = self.data.transform(ndom)
                coorx = datam.X[:, 0]
            else:
                coorx = np.arange(len(self.data))
            self.lsx = lsx = values_to_linspace(coorx)
            self.data_xs = coorx

            self.wavenumbers = wavenumbers = getx(self.data)
            self.lsy = lsy = values_to_linspace(wavenumbers)

            # set data
            imdata = np.ones((lsy[2], lsx[2])) * float("nan")
            xindex = index_values(coorx, lsx)
            yindex = index_values(wavenumbers, lsy)
            for xind, d in zip(xindex, self.data.X):
                imdata[yindex, xind] = d

            self.data_imagepixels = xindex

            self.img.setImage(imdata, autoLevels=False)
            self.update_levels()
            self.update_color_schema()

            # shift centres of the pixels so that the axes are useful
            shiftx = _shift(lsx)
            shifty = _shift(lsy)
            left = lsx[0] - shiftx
            bottom = lsy[0] - shifty
            width = (lsx[1] - lsx[0]) + 2 * shiftx
            height = (lsy[1] - lsy[0]) + 2 * shifty
            self.img.setRect(QRectF(left, bottom, width, height))

            self.refresh_img_selection()
Пример #5
0
    def test_hypercube_roundtrip(self):
        d = self.mosaic
        xat = [v for v in d.domain.metas if v.name == "map_x"][0]
        yat = [v for v in d.domain.metas if v.name == "map_y"][0]
        hypercube, lsx, lsy = get_hypercube(d, xat, yat)

        features = getx(d)
        ndom = Orange.data.Domain([xat, yat])
        datam = Orange.data.Table(ndom, d)
        coorx = datam.X[:, 0]
        coory = datam.X[:, 1]
        coords = np.ones((lsx[2], lsy[2], 2))
        coords[index_values(coorx, lsx), index_values(coory, lsy)] = datam.X
        x_locs = coords[:, 0, 0]
        y_locs = coords[0, :, 1]

        features, spectra, data = _spectra_from_image(hypercube, features,
                                                      x_locs, y_locs)
        nd = build_spec_table(features, spectra, data)

        np.testing.assert_equal(d.X, nd.X)
        np.testing.assert_equal(d.Y, nd.Y)
        np.testing.assert_equal(d.metas, nd.metas)
        self.assertEqual(d.domain, nd.domain)
Пример #6
0
    def update_view(self):
        self.img.clear()
        self.img.setSelection(None)
        self.lsx = None
        self.lsy = None
        self.data_points = None
        self.data_values = None
        self.data_imagepixels = None
        if self.data and self.attr_x and self.attr_y:
            xat = self.data.domain[self.attr_x]
            yat = self.data.domain[self.attr_y]

            ndom = Orange.data.Domain([xat, yat])
            datam = Orange.data.Table(ndom, self.data)
            coorx = datam.X[:, 0]
            coory = datam.X[:, 1]
            self.data_points = datam.X
            self.lsx = lsx = values_to_linspace(coorx)
            self.lsy = lsy = values_to_linspace(coory)
            if lsx[-1] * lsy[-1] > IMAGE_TOO_BIG:
                self.parent.Error.image_too_big(lsx[-1], lsy[-1])
                return
            else:
                self.parent.Error.image_too_big.clear()

            di = {}
            if self.parent.value_type == 0:  # integrals
                imethod = self.parent.integration_methods[self.parent.integration_method]

                if imethod != Integrate.PeakAt:
                    datai = Integrate(methods=imethod,
                                      limits=[[self.parent.lowlim, self.parent.highlim]])(self.data)
                else:
                    datai = Integrate(methods=imethod,
                                      limits=[[self.parent.choose, self.parent.choose]])(self.data)

                if np.any(self.parent.curveplot.selection_group):
                    # curveplot can have a subset of curves on the input> match IDs
                    ind = np.flatnonzero(self.parent.curveplot.selection_group)[0]
                    dind = self.data_ids[self.parent.curveplot.data[ind].id]
                    di = datai.domain.attributes[0].compute_value.draw_info(self.data[dind:dind+1])
                d = datai.X[:, 0]
            else:
                dat = self.data.domain[self.parent.attr_value]
                ndom = Orange.data.Domain([dat])
                d = Orange.data.Table(ndom, self.data).X[:, 0]
            self.refresh_markings(di)

            # set data
            imdata = np.ones((lsy[2], lsx[2])) * float("nan")

            xindex = index_values(coorx, lsx)
            yindex = index_values(coory, lsy)
            imdata[yindex, xindex] = d
            self.data_values = d
            self.data_imagepixels = np.vstack((yindex, xindex)).T

            self.img.setImage(imdata, autoLevels=False)
            self.img.setLevels([0, 1])
            self.update_levels()
            self.update_color_schema()

            # shift centres of the pixels so that the axes are useful
            shiftx = _shift(lsx)
            shifty = _shift(lsy)
            left = lsx[0] - shiftx
            bottom = lsy[0] - shifty
            width = (lsx[1]-lsx[0]) + 2*shiftx
            height = (lsy[1]-lsy[0]) + 2*shifty
            self.img.setRect(QRectF(left, bottom, width, height))

            self.refresh_img_selection()