Пример #1
0
 def __init__(self,
              aa=FitParameter(parameter_name="aa", value=1e-3),
              bb=FitParameter(parameter_name="bb", value=1e-3),
              e1  = FitParameter(parameter_name="e1" , value=1e-4),
              e3  = FitParameter(parameter_name="e3" , value=1e-4),
              e6  = FitParameter(parameter_name="e6" , value=1e-4)):
     super().__init__(aa, bb, 12, e1, e3=e3, e6=e6)
Пример #2
0
 def __init__(self,
              aa=FitParameter(parameter_name="aa", value=1e-3),
              bb=FitParameter(parameter_name="bb", value=1e-3),
              e1  = FitParameter(parameter_name="e1" , value=1e-4),
              e3  = FitParameter(parameter_name="e3" , value=1e-4),
              e6  = FitParameter(parameter_name="e6" , value=1e-4)):
     super().__init__(aa, bb, 11, e1, e3=e3, e6=e6)
     raise NotImplementedError("TO BE CHECKED")
    def send_contrast_factor_a_b(self):
        try:
            if not self.fit_global_parameters is None:
                if self.fit_global_parameters.fit_initialization is None:
                    raise ValueError(
                        "Calculation is not possibile, Crystal Structure is missing"
                    )

                if self.fit_global_parameters.fit_initialization.crystal_structures is None:
                    raise ValueError(
                        "Calculation is not possibile, Crystal Structure is missing"
                    )

                congruence.checkStrictlyPositiveNumber(self.c11, "c11")
                congruence.checkStrictlyPositiveNumber(self.c12, "c12")
                congruence.checkStrictlyPositiveNumber(self.c44, "c44")

                symmetry = self.fit_global_parameters.fit_initialization.crystal_structures[
                    0].symmetry

                Ae, Be, As, Bs = calculate_A_B_coefficients(
                    self.c11, self.c12, self.c44, symmetry)

                text = "Ae = " + str(Ae) + "\n"
                text += "Be = " + str(Be) + "\n"
                text += "As = " + str(As) + "\n"
                text += "Bs = " + str(Bs) + "\n"

                self.text_area.setText(text)

                self.fit_global_parameters.strain_parameters = [
                    KrivoglazWilkensModel(
                        Ae=FitParameter(parameter_name=KrivoglazWilkensModel.
                                        get_parameters_prefix() + "Ae",
                                        value=Ae,
                                        fixed=True),
                        Be=FitParameter(parameter_name=KrivoglazWilkensModel.
                                        get_parameters_prefix() + "Be",
                                        value=Be,
                                        fixed=True),
                        As=FitParameter(parameter_name=KrivoglazWilkensModel.
                                        get_parameters_prefix() + "As",
                                        value=As,
                                        fixed=True),
                        Bs=FitParameter(parameter_name=KrivoglazWilkensModel.
                                        get_parameters_prefix() + "Bs",
                                        value=Bs,
                                        fixed=True))
                ]

                self.send("Fit Global Parameters", self.fit_global_parameters)

        except Exception as e:
            QMessageBox.critical(self, "Error", str(e), QMessageBox.Ok)

            if self.IS_DEVELOP: raise e
Пример #4
0
 def __init__(self,
              aa=FitParameter(parameter_name="aa", value=1e-3),
              bb=FitParameter(parameter_name="bb", value=1e-3),
              laue_id = 13,
              e1 = FitParameter(parameter_name="e1" , value=1e-4),
              e4 = FitParameter(parameter_name="e4" , value=1e-4)):
     super(InvariantPAHCubic, self).__init__(aa, bb, laue_id,
                                             e1=e1,
                                             e2=FitParameter(parameter_name=self.get_parameters_prefix() + "e2",
                                                             value=e1.value,
                                                             function=True,
                                                             function_value=e1.parameter_name),
                                             e3=FitParameter(parameter_name=self.get_parameters_prefix() + "e3",
                                                             value=e1.value,
                                                             function=True,
                                                             function_value=e1.parameter_name),
                                             e4=e4,
                                             e5=FitParameter(parameter_name=self.get_parameters_prefix() + "e5",
                                                             value=e4.value,
                                                             function=True,
                                                             function_value=e4.parameter_name),
                                             e6=FitParameter(parameter_name=self.get_parameters_prefix() + "e6",
                                                             value=e4.value,
                                                             function=True,
                                                             function_value=e4.parameter_name))
Пример #5
0
 def __init__(self,
              aa=FitParameter(parameter_name="aa", value=1e-3),
              bb=FitParameter(parameter_name="bb", value=1e-3),
              e1  = FitParameter(parameter_name="e1" , value=1e-4),
              e2  = FitParameter(parameter_name="e2" , value=1e-4),
              e3  = FitParameter(parameter_name="e3" , value=1e-4),
              e4  = FitParameter(parameter_name="e4" , value=1e-4),
              e5  = FitParameter(parameter_name="e5" , value=1e-4),
              e6  = FitParameter(parameter_name="e6" , value=1e-4),
              e7  = FitParameter(parameter_name="e7" , value=1e-4)):
     super().__init__(aa, bb, 3, e1, e2, e3, e4, e5, e6, e7)
     raise NotImplementedError("TO BE CHECKED")
Пример #6
0
 def __init__(self,
              aa=FitParameter(parameter_name="aa", value=1e-3),
              bb=FitParameter(parameter_name="bb", value=1e-3),
              e1  = FitParameter(parameter_name="e1" , value=1e-4),
              e3  = FitParameter(parameter_name="e3" , value=1e-4),
              e4  = FitParameter(parameter_name="e4" , value=1e-4),
              e6  = FitParameter(parameter_name="e6" , value=1e-4),
              e7  = FitParameter(parameter_name="e7" , value=1e-4),
              e9  = FitParameter(parameter_name="e9" , value=1e-4),
              e15 = FitParameter(parameter_name="e15", value=1e-4)):
     super().__init__(aa, bb, 8, e1, e3=e3, e4=e4, e6=e6, e7=e7, e9=e9, e15=e15)
     raise NotImplementedError("TO BE CHECKED")
Пример #7
0
    def generate_reflections(self):
        if self.widget.populate_parameter_in_widget(self, "a", "").function:
            QMessageBox.critical(
                self, "Error",
                "a0 value is a function, generation is not possibile",
                QMessageBox.Ok)
            return

        if not self.reflections is None and not self.reflections.strip() == "":
            if not ConfirmDialog.confirmed(
                    self, "Confirm overwriting of exisiting reflections?"):
                return

        if self.limit_type == 0:
            list = list_of_s_bragg(self.a,
                                   symmetry=self.cb_symmetry.currentText())
        elif self.limit_type == 1:
            list = list_of_s_bragg(self.a,
                                   symmetry=self.cb_symmetry.currentText(),
                                   n_peaks=int(self.limit))
        elif self.limit_type == 2:
            if not self.widget.fit_global_parameters is None \
               and not self.widget.fit_global_parameters.fit_initialization is None \
               and not self.widget.fit_global_parameters.fit_initialization.diffraction_patterns is None \
               and not self.widget.fit_global_parameters.fit_initialization.diffraction_patterns[self.index].wavelength.function:
                wavelength = self.widget.fit_global_parameters.fit_initialization.diffraction_patterns[
                    self.index].wavelength.value

                list = list_of_s_bragg(self.a,
                                       symmetry=self.cb_symmetry.currentText(),
                                       s_max=Utilities.s(
                                           numpy.radians(self.limit / 2),
                                           wavelength))
            else:
                QMessageBox.critical(
                    self, "Error",
                    "No wavelenght is available, 2theta limit is not possibile",
                    QMessageBox.Ok)
                return

        text = ""

        for index in range(0, len(list)):
            h = list[index][0][0]
            k = list[index][0][1]
            l = list[index][0][2]

            text += Reflection(
                h, k, l,
                FitParameter(
                    parameter_name="I" + str(h) + str(k) + str(l),
                    value=1000,
                    boundary=Boundary(min_value=0.0))).to_text() + "\n"

        self.text_area.setText(text)
    def populate_parameter_in_widget(cls,
                                     widget,
                                     parameter_name,
                                     parameter_prefix,
                                     parameter_suffix=""):
        if hasattr(widget, parameter_name + "_function") and getattr(
                widget, parameter_name + "_function") == 1:
            return FitParameter(parameter_name=parameter_prefix +
                                parameter_name + parameter_suffix,
                                function=True,
                                function_value=getattr(
                                    widget,
                                    parameter_name + "_function_value"))
        elif getattr(widget, parameter_name + "_fixed") == 1:
            return FitParameter(parameter_name=parameter_prefix +
                                parameter_name + parameter_suffix,
                                value=getattr(widget, parameter_name),
                                fixed=True)
        else:
            boundary = None

            min_value = PARAM_HWMIN
            max_value = PARAM_HWMAX

            if getattr(widget, parameter_name + "_has_min") == 1:
                min_value = getattr(widget, parameter_name + "_min")
            if getattr(widget, parameter_name + "_has_max") == 1:
                max_value = getattr(widget, parameter_name + "_max")

            if min_value != PARAM_HWMIN or max_value != PARAM_HWMAX:
                boundary = Boundary(min_value=min_value, max_value=max_value)

            return FitParameter(parameter_name=parameter_prefix +
                                parameter_name,
                                value=getattr(widget, parameter_name),
                                boundary=boundary)
Пример #9
0
        step = (D_max-D_min)/1000

        x = numpy.arange(start=D_min, stop=D_max, step=step)

        try:
            if self.distribution == Distribution.LOGNORMAL:
                y = lognormal_distribution(self.mu.value, self.sigma.value, x)
            else:
                y = numpy.zeros(len(x))

            if auto:
                D_min = 0.0
                D_max = x[numpy.where(y > 1e-5)][-1]
                if D_min == D_max: D_min==x[0]

                x, y, D_min, D_max = self.get_distribution(auto=False, D_min=D_min, D_max=D_max)
        except:
            pass

        return x, y, D_min, D_max


if __name__=="__main__":
    fpl = SizeParameters(shape=Shape.SPHERE,
                         distribution=Distribution.DELTA,
                         mu=FitParameter(value=10, parameter_name="mu"),
                         sigma=None, add_saxs=True)

    print(fpl.get_parameters())
    def parse_reflections(self, text, progressive=""):
        congruence.checkEmptyString(text, "Reflections")

        lines = text.splitlines()

        reflections = []

        for i in range(len(lines)):
            congruence.checkEmptyString(lines[i],
                                        "Reflections: line " + str(i + 1))

            if not lines[i].strip().startswith("#"):
                data = lines[i].strip().split(",")

                if len(data) < 4:
                    raise ValueError("Reflections, malformed line: " +
                                     str(i + 1))

                h = int(data[0].strip())
                k = int(data[1].strip())
                l = int(data[2].strip())

                if ":=" in data[3].strip():
                    intensity_data = data[3].strip().split(":=")

                    if len(intensity_data) == 2:
                        intensity_name = intensity_data[0].strip()
                        function_value = intensity_data[1].strip()
                    else:
                        intensity_name = None
                        function_value = data[3].strip()

                    if intensity_name is None:
                        intensity_name = CrystalStructure.get_parameters_prefix(
                        ) + progressive + "I" + str(h) + str(k) + str(l)
                    elif not intensity_name.startswith(
                            CrystalStructure.get_parameters_prefix()):
                        intensity_name = CrystalStructure.get_parameters_prefix(
                        ) + progressive + intensity_name

                    reflection = Reflection(h,
                                            k,
                                            l,
                                            intensity=FitParameter(
                                                parameter_name=intensity_name,
                                                function=True,
                                                function_value=function_value))
                else:

                    intensity_data = data[3].strip().split()

                    if len(intensity_data) == 2:
                        intensity_name = intensity_data[0].strip()
                        intensity_value = float(intensity_data[1])
                    else:
                        intensity_name = None
                        intensity_value = float(data[3])

                    boundary = None
                    fixed = False

                    if len(data) > 4:
                        min_value = PARAM_HWMIN
                        max_value = PARAM_HWMAX

                        for j in range(4, len(data)):
                            boundary_data = data[j].strip().split()

                            if boundary_data[0] == "min":
                                min_value = float(boundary_data[1].strip())
                            elif boundary_data[0] == "max":
                                max_value = float(boundary_data[1].strip())
                            elif boundary_data[0] == "fixed":
                                fixed = True

                        if not fixed:
                            if min_value != PARAM_HWMIN or max_value != PARAM_HWMAX:
                                boundary = Boundary(min_value=min_value,
                                                    max_value=max_value)
                            else:
                                boundary = Boundary()

                    if intensity_name is None:
                        intensity_name = CrystalStructure.get_parameters_prefix(
                        ) + progressive + "I" + str(h) + str(k) + str(l)
                    elif not intensity_name.startswith(
                            CrystalStructure.get_parameters_prefix()):
                        intensity_name = CrystalStructure.get_parameters_prefix(
                        ) + progressive + intensity_name

                    reflection = Reflection(h,
                                            k,
                                            l,
                                            intensity=FitParameter(
                                                parameter_name=intensity_name,
                                                value=intensity_value,
                                                fixed=fixed,
                                                boundary=boundary))
                reflections.append(reflection)

        self.reflections = reflections
        self.update_reflections()
    def init_cube(cls,
                  a0,
                  symmetry=Symmetry.FCC,
                  use_structure=False,
                  formula=None,
                  intensity_scale_factor=None,
                  progressive=""):
        if not cls.is_cube(symmetry):
            raise ValueError("Symmetry doesn't belong to a cubic crystal cell")

        if a0.fixed:
            a = FitParameter(
                parameter_name=CrystalStructure.get_parameters_prefix() +
                progressive + "a",
                value=a0.value,
                fixed=a0.fixed,
                boundary=a0.boundary)
            b = FitParameter(
                parameter_name=CrystalStructure.get_parameters_prefix() +
                progressive + "b",
                value=a0.value,
                fixed=a0.fixed,
                boundary=a0.boundary)
            c = FitParameter(
                parameter_name=CrystalStructure.get_parameters_prefix() +
                progressive + "c",
                value=a0.value,
                fixed=a0.fixed,
                boundary=a0.boundary)
        else:
            a = a0
            b = FitParameter(
                parameter_name=CrystalStructure.get_parameters_prefix() +
                progressive + "b",
                function=True,
                function_value=CrystalStructure.get_parameters_prefix() +
                progressive + "a")
            c = FitParameter(
                parameter_name=CrystalStructure.get_parameters_prefix() +
                progressive + "c",
                function=True,
                function_value=CrystalStructure.get_parameters_prefix() +
                progressive + "a")

        alpha = FitParameter(
            parameter_name=CrystalStructure.get_parameters_prefix() +
            progressive + "alpha",
            value=90,
            fixed=True)
        beta = FitParameter(
            parameter_name=CrystalStructure.get_parameters_prefix() +
            progressive + "beta",
            value=90,
            fixed=True)
        gamma = FitParameter(
            parameter_name=CrystalStructure.get_parameters_prefix() +
            progressive + "gamma",
            value=90,
            fixed=True)

        return CrystalStructure(a, b, c, alpha, beta, gamma, symmetry,
                                use_structure, formula, intensity_scale_factor)
        text += "-----------------------------------\n"

        return text

    def get_parameters(self):
        parameters = super().get_parameters()

        for reflection in self.reflections:
            parameters.append(reflection.intensity)

        return parameters


if __name__ == "__main__":
    test = CrystalStructure.init_cube(a0=FitParameter(value=0.55, fixed=True),
                                      symmetry=Symmetry.BCC)

    test = CrystalStructure(a=FitParameter(parameter_name="a", value=0.55),
                            b=FitParameter(parameter_name="b", value=0.66),
                            c=FitParameter(parameter_name="c", value=0.77),
                            alpha=FitParameter(value=10),
                            beta=FitParameter(value=20),
                            gamma=FitParameter(value=30),
                            symmetry=Symmetry.NONE)

    test.add_reflection(
        Reflection(1,
                   0,
                   3,
                   intensity=FitParameter(
Пример #13
0
 def __init__(self,
              aa=FitParameter(parameter_name="aa", value=1e-3),
              bb=FitParameter(parameter_name="bb", value=1e-3),
              e1  = FitParameter(parameter_name="e1" , value=1e-4),
              e4  = FitParameter(parameter_name="e4" , value=1e-4)):
     super(InvariantPAHLaueGroup14, self).__init__(aa, bb, 14, e1, e4)
Пример #14
0
 def __init__(self,
              aa  =FitParameter(parameter_name="aa", value=1e-3),
              bb  =FitParameter(parameter_name="bb", value=1e-3),
              e1  = FitParameter(parameter_name="e1" , value=1e-4),
              e2  = FitParameter(parameter_name="e2" , value=1e-4),
              e3  = FitParameter(parameter_name="e3" , value=1e-4),
              e4  = FitParameter(parameter_name="e4" , value=1e-4),
              e5  = FitParameter(parameter_name="e5" , value=1e-4),
              e6  = FitParameter(parameter_name="e6" , value=1e-4),
              e7  = FitParameter(parameter_name="e7" , value=1e-4),
              e8  = FitParameter(parameter_name="e8" , value=1e-4),
              e9  = FitParameter(parameter_name="e9" , value=1e-4),
              e10 = FitParameter(parameter_name="e10", value=1e-4),
              e11 = FitParameter(parameter_name="e11", value=1e-4),
              e12 = FitParameter(parameter_name="e12", value=1e-4),
              e13 = FitParameter(parameter_name="e13", value=1e-4),
              e14 = FitParameter(parameter_name="e14", value=1e-4),
              e15 = FitParameter(parameter_name="e15", value=1e-4)):
     super().__init__(aa, bb, 1, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15)
     raise NotImplementedError("TO BE CHECKED")
        text += "Goniometer Radius: " + str(self.goniometer_radius) + "\n"
        text += self.displacement.to_text() + "\n"

        text += "-----------------------------------\n"

        return text

    def duplicate(self):
        return SpecimenDisplacement(
            goniometer_radius=self.goniometer_radius,
            displacement=None
            if self.displacement is None else self.displacement.duplicate())


if __name__ == "__main__":
    test = Caglioti(U=FitParameter(parameter_name="U", value=1.0, fixed=True),
                    V=FitParameter(parameter_name="V",
                                   value=2.0,
                                   boundary=Boundary(max_value=10.0)),
                    W=FitParameter(parameter_name="W",
                                   value=3.0,
                                   boundary=Boundary(min_value=-10.0)),
                    a=FitParameter(parameter_name="a", value=4.0, fixed=True),
                    b=FitParameter(parameter_name="b",
                                   value=5.0,
                                   boundary=Boundary(min_value=-10.0,
                                                     max_value=10.0)),
                    c=FitParameter(parameter_name="c",
                                   value=6.0,
                                   boundary=Boundary(min_value=-10.0,
                                                     max_value=10.0)))
Пример #16
0
from orangecontrib.xrdanalyzer.controller.fit.instrument.background_parameters import ChebyshevBackground
from orangecontrib.xrdanalyzer.controller.fit.instrument.instrumental_parameters import Caglioti, Lab6TanCorrection
from orangecontrib.xrdanalyzer.controller.fit.microstructure.size import SizeParameters, Distribution, Shape
from orangecontrib.xrdanalyzer.controller.fit.microstructure.strain import InvariantPAHLaueGroup14, InvariantPAH

if __name__ == "__main__":

    fit_global_parameters = FitGlobalParameters()

    fit_global_parameters.free_input_parameters.set_parameter("A", 10)
    fit_global_parameters.free_input_parameters.set_parameter("C", 20)

    parameter_prefix = Caglioti.get_parameters_prefix()
    fit_global_parameters.instrumental_parameters = Caglioti(
        a=FitParameter(parameter_name=parameter_prefix + "a",
                       value=0.5,
                       boundary=Boundary(min_value=-10, max_value=10)),
        b=FitParameter(parameter_name=parameter_prefix + "b",
                       value=0.001,
                       boundary=Boundary(min_value=0, max_value=10)),
        c=FitParameter(parameter_name=parameter_prefix + "c",
                       function=True,
                       function_value="numpy.exp(A +C)"),
        U=FitParameter(parameter_name=parameter_prefix + "U",
                       function=True,
                       function_value="numpy.exp(-(A +C))"),
        V=FitParameter(parameter_name=parameter_prefix + "V",
                       value=0.001,
                       fixed=True),
        W=FitParameter(parameter_name=parameter_prefix + "W",
                       value=-0.001,