Пример #1
0
def test_dr2_edr3():
    """
    Test that both DR2 and eDR3 retrieval gives ballpark similar values for
    beta Pic
    """
    hip_num = '027321'  # beta Pic
    edr3_num = 4792774797545800832
    dr2_number = 4792774797545105664

    num_secondary_bodies = 1
    path_to_iad_file = '{}HIP{}.d'.format(DATADIR, hip_num)

    myHip = hipparcos.HipparcosLogProb(path_to_iad_file, hip_num,
                                       num_secondary_bodies)

    dr3Gaia = gaia.GaiaLogProb(edr3_num, myHip, dr='edr3')
    dr2Gaia = gaia.GaiaLogProb(dr2_number, myHip, dr='dr2')

    assert np.isclose(dr2Gaia.ra, dr3Gaia.ra,
                      atol=0.1)  # abs tolerance in degrees
Пример #2
0
def test_valueerror():
    """
    Check that if I don't say dr2 or edr3, I get a value error
    """
    hip_num = '027321'  # beta Pic
    edr3_num = '4792774797545800832'
    num_secondary_bodies = 1
    path_to_iad_file = '{}HIP{}.d'.format(DATADIR, hip_num)

    myHip = hipparcos.HipparcosLogProb(path_to_iad_file, hip_num,
                                       num_secondary_bodies)
    try:
        myGaia = gaia.GaiaLogProb(edr3_num, myHip, dr='dr3')
        assert False, 'Test failed!'
    except ValueError:
        pass
Пример #3
0
def test_save_and_load_gaia_and_hipparcos():
    """
    Test that a Results object for a Gaia+Hipparcos fit
    is saved and loaded properly.
    """

    hip_num = '027321'
    gaia_num = 4792774797545105664
    num_secondary_bodies = 1
    path_to_iad_file = '{}HIP{}.d'.format(DATADIR, hip_num)

    myHip = hipparcos.HipparcosLogProb(path_to_iad_file, hip_num,
                                       num_secondary_bodies)
    myGaia = gaia.GaiaLogProb(gaia_num, myHip)

    input_file = os.path.join(DATADIR, 'betaPic.csv')
    data_table_with_rvs = read_input.read_file(input_file)
    mySys = system.System(1,
                          data_table_with_rvs,
                          1.22,
                          56.95,
                          mass_err=0.08,
                          plx_err=0.26,
                          hipparcos_IAD=myHip,
                          gaia=myGaia,
                          fit_secondary_mass=True)

    mySamp = sampler.MCMC(mySys, num_temps=1, num_walkers=50)
    mySamp.run_sampler(1, burn_steps=0)

    save_name = 'test_results.h5'
    mySamp.results.save_results(save_name)

    loadedResults = results.Results()
    loadedResults.load_results(save_name)

    assert np.all(loadedResults.system.hipparcos_IAD.epochs ==
                  mySys.hipparcos_IAD.epochs)
    assert np.all(loadedResults.system.tau_ref_epoch == mySys.tau_ref_epoch)
    assert np.all(loadedResults.system.gaia.ra == mySys.gaia.ra)

    os.system('rm {}'.format(save_name))
Пример #4
0
def test_system_setup():
    """
    Test that a System object with Hipparcos and Gaia is initialized correctly
    """
    hip_num = '027321'  # beta Pic
    edr3_num = '4792774797545800832'
    num_secondary_bodies = 1
    path_to_iad_file = '{}HIP{}.d'.format(DATADIR, hip_num)

    myHip = hipparcos.HipparcosLogProb(path_to_iad_file, hip_num,
                                       num_secondary_bodies)
    myGaia = gaia.GaiaLogProb(edr3_num, myHip, dr='edr3')

    input_file = os.path.join(DATADIR, 'betaPic.csv')
    plx = 51.5

    num_secondary_bodies = 1
    data_table = read_input.read_file(input_file)

    betaPic_system = system.System(num_secondary_bodies,
                                   data_table,
                                   1.75,
                                   plx,
                                   hipparcos_IAD=myHip,
                                   gaia=myGaia,
                                   fit_secondary_mass=True,
                                   mass_err=0.01,
                                   plx_err=0.01)

    assert betaPic_system.labels == [
        'sma1', 'ecc1', 'inc1', 'aop1', 'pan1', 'tau1', 'plx', 'pm_ra',
        'pm_dec', 'alpha0', 'delta0', 'm1', 'm0'
    ]

    assert betaPic_system.fit_secondary_mass
    assert betaPic_system.track_planet_perturbs
Пример #5
0
    data_table = read_input.read_file(filename)
    print(data_table)

    # system parameters
    num_secondary_bodies = 1
    hipparcos_number = hip_num
    hipparcos_filename = IAD_file

    # HIP logprob
    HD142527_Hip = hipparcos.HipparcosLogProb(hipparcos_filename,
                                              hipparcos_number,
                                              num_secondary_bodies)
    # gaia logprob
    HD142527_edr3_number = 5994826707951507200
    HD142527_Gaia = gaia.GaiaLogProb(HD142527_edr3_number,
                                     HD142527_Hip,
                                     dr='edr3')

    # more system parameters
    m0 = 2.05  # [Msol]
    plx = 6.35606723729484  # [mas]
    fit_secondary_mass = True

    mass_err = 0.5  # [Msol]
    plx_err = 0.04714455423  # [mas]

    HD142527_system = system.System(num_secondary_bodies,
                                    data_table,
                                    m0,
                                    plx,
                                    hipparcos_IAD=HD142527_Hip,
Пример #6
0
def test_orbit_calculation():
    """
    Test that the Gaia module correctly calculates log likelihood
    for simulated astrometric motion due to:
        1) proper motion only
        2) fitted offset in Hipparcos positon only
        3) orbital motion only

    NOTE: this only works as long as lnlike is defined as (data - model) in
        the Gaia module (i.e. no constant offset term applied), since
        I'm checking that the absolute likelihood probability is 1 when data =
        model.
    """

    sma = 1
    ecc = 0
    inc = 0
    aop = 0
    pan = 0
    tau = 0

    pm_a = 0
    pm_d = 0

    plx = 100  # [mas]
    m0 = 1
    m1 = 1
    a0 = 0
    d0 = 0

    hip_num = '027321'  # beta Pic
    edr3_num = '4792774797545800832'
    num_secondary_bodies = 1
    path_to_iad_file = '{}HIP{}.d'.format(DATADIR, hip_num)

    myHip = hipparcos.HipparcosLogProb(path_to_iad_file, hip_num,
                                       num_secondary_bodies)
    myGaia = gaia.GaiaLogProb(edr3_num, myHip, dr='edr3')

    param_idx = {
        'sma1': 0,
        'ecc1': 1,
        'inc1': 2,
        'aop1': 3,
        'pan1': 4,
        'tau1': 5,
        'plx': 6,
        'm0': 7,
        'm1': 8,
        'alpha0': 9,
        'delta0': 10,
        'pm_ra': 11,
        'pm_dec': 12
    }

    # Case 1: only proper motion explains Gaia-Hip offset
    pm_a = 100  # [mas/yr]
    pm_d = 100  # [mas/yr]
    sma = 1e-17

    raoff = np.zeros((2, 1))
    deoff = np.zeros((2, 1))

    myGaia.ra = myHip.alpha0 + (myGaia.mas2deg * pm_a *
                                (myGaia.gaia_epoch - myGaia.hipparcos_epoch) /
                                np.cos(np.radians(myHip.delta0)))
    myGaia.dec = myHip.delta0 + (myGaia.mas2deg * pm_d *
                                 (myGaia.gaia_epoch - myGaia.hipparcos_epoch))
    test_samples = [
        sma, ecc, inc, aop, pan, tau, plx, m0, m1, a0, d0, pm_a, pm_d
    ]

    lnlike = myGaia.compute_lnlike(raoff, deoff, test_samples, param_idx)

    assert np.isclose(np.exp(lnlike), 1)

    # Case 2: only H0 offset explains Gaia-Hip offset
    test_samples[param_idx['pm_dec']] = 0
    test_samples[param_idx['pm_ra']] = 0
    a0 = 100
    d0 = 100
    test_samples[param_idx['alpha0']] = a0  # [mas]
    test_samples[param_idx['delta0']] = d0  # [mas]

    myGaia.ra = myHip.alpha0 + myGaia.mas2deg * a0 / np.cos(
        np.radians(myHip.delta0))
    myGaia.dec = myHip.delta0 + myGaia.mas2deg * d0

    lnlike = myGaia.compute_lnlike(raoff, deoff, test_samples, param_idx)

    assert np.isclose(np.exp(lnlike), 1)

    # Case 3: only orbital motion explains Gaia-Hip offset
    test_samples[param_idx['alpha0']] = 0
    test_samples[param_idx['delta0']] = 0

    mas2arcsec = 1e-3
    deg2arcsec = 3600

    myGaia.ra = myHip.alpha0
    myGaia.dec = myHip.delta0 + 1

    sma = 2 * (myGaia.dec - myHip.delta0) * deg2arcsec * (plx * mas2arcsec
                                                          )  # [au]
    per = 2 * (myGaia.gaia_epoch - myGaia.hipparcos_epoch)  # [yr]
    mtot = sma**3 / per**2

    test_samples[param_idx['sma1']] = sma
    test_samples[param_idx['m0']] = mtot / 2
    test_samples[param_idx['m1']] = mtot / 2

    # passes through peri (+sma decl for e=0 orbits) at Hipparcos epoch
    # -> @ Gaia epoch, primary should be at +sma decl
    tau = basis.tp_to_tau(myGaia.hipparcos_epoch, 58849, per)
    test_samples[param_idx['tau1']] = tau

    # choose sma and mass so that Hipparcos/Gaia difference is only due to orbit.
    deoff[1, :] = (myGaia.dec - myHip.delta0) / myGaia.mas2deg
    deoff[0, :] = 0
    lnlike = myGaia.compute_lnlike(raoff, deoff, test_samples, param_idx)

    assert np.isclose(np.exp(lnlike), 1)