def _init_ORB_grid(data, grid_par=-6, over_s=7): u"""Initializes ORBKIT's grid and returns necessary data for visualization. **Parameters:** data : dict QCinfo instance representing the molecule. grid_par : int Parameter controlling grid. If positive or zero, it specifies number of points; otherwise it specifies the resolution in inverse atomic units. over_s : int|float Oversizing, to be tuned **Returns** X, Y, Z Meshgrid (as returned by numpy.mgrid) for positioning the voxels. """ from orbkit import grid ## Reinitialization of the grid grid.is_initialized = False ## Spacing/Number of points if grid_par > 0: grid.N_ = [grid_par] * 3 elif grid_par == 0: grid.N_ = [80] * 3 else: grid.delta_ = [1.0 / (-grid_par)] * 3 grid.max_ = np.amax(data.geo_spec, axis=0) + over_s grid.min_ = np.amin(data.geo_spec, axis=0) - over_s grid.adjust_to_geo(data, extend=over_s, step=grid.delta_[0]) grid.init(force=True) ## The meshgrid MUST be generated in this manner, ## in order to be maximally consistent with ORBKIT ## which uses numpy.arange to generate its grid ## (i.e. start:stop+step:step) X, Y, Z = np.mgrid[grid.min_[0]:grid.max_[0] + grid.delta_[0]:grid.delta_[0], grid.min_[1]:grid.max_[1] + grid.delta_[1]:grid.delta_[1], grid.min_[2]:grid.max_[2] + grid.delta_[2]:grid.delta_[2]] ## NOTICE: numpy.arange does not return consistent results if step is a float, ## specifically if (stop - start)/step overflows, resulting in ## arange(start, stop, step)[-1] > stop return X, Y, Z
def orbkit_grid(self, qc): # Initialize grid grid.adjust_to_geo(qc, extend=5.0, step=0.4) grid.grid_init(force=True) self.slice_length = grid.N_[1] * grid.N_[2] / 2
def run_orbkit(use_qc=None, check_options=True, standalone=False): '''Controls the execution of all computational tasks. **Parameters:** use_qc : QCinfo, optional If not None, the reading of a quantum chemistry output is omitted and the given QCinfo class is used for all computational tasks. (See :ref:`Central Variables` in the manual for details on QCinfo.) check_options : bool, optional If True, the specified options will be validated. **Returns:** data : type and shape depend on the options. Contains orbkit's output. See :ref:`High-Level Interface` in the manual for details. ''' # Set some global variables global qc # Display program information display(lgpl_short) # Check for the correctness of orbkit.options if check_options: display('Checking orbkit.options...\n') options.check_options(display=display, interactive=False, info=True, check_io=(use_qc is None)) # Measurement of required execution time t = [time.time()] # Do we need to read out the info of all MOs? if (options.mo_set or options.calc_mo) is not False: options.all_mo = True if use_qc is None: # Read the input file qc = read.main_read(options.filename, itype=options.itype, all_mo=options.all_mo, spin=options.spin, cclib_parser=options.cclib_parser) else: # Use a user defined QCinfo class. qc = use_qc display('\nSetting up the grid...') if options.grid_file is not None: # Read the grid from an external file grid.read(options.grid_file) elif options.adjust_grid is not None: # Adjust the grid to geo_spec extend, step = options.adjust_grid grid.adjust_to_geo(qc, extend=extend, step=step) elif options.random_grid: # Create a randomized grid grid.random_grid(qc.geo_spec) # Initialize grid grid.grid_init(is_vector=options.is_vector) if options.is_vector: grid.is_regular = False display(grid.get_grid()) # Display the grid if not grid.is_regular and options.center_grid is not None: raise IOError( 'The option --center is only supported for regular grids.') elif options.center_grid is not None: atom = grid.check_atom_select(options.center_grid, qc.geo_info, qc.geo_spec, interactive=True, display=display) # Center the grid to a specific atom and (0,0,0) if requested grid.center_grid(qc.geo_spec[atom - 1], display=display) if check_options or standalone: options.check_grid_output_compatibilty() t.append(time.time()) # A new time step # The calculation of all AOs (--calc_ao) if options.calc_ao != False: data = extras.calc_ao(qc, drv=options.drv, otype=options.otype) t.append(time.time()) # Final time good_bye_message(t) return data # The calculation of selected MOs (--calc_mo) or # the density formed by selected MOs (--mo_set) if (options.mo_set or options.calc_mo) != False: # What should the program do? if options.calc_mo != False: fid_mo_list = options.calc_mo elif options.mo_set != False: fid_mo_list = options.mo_set # Call the function for actual calculation if options.calc_mo != False: data = extras.calc_mo(qc, fid_mo_list, drv=options.drv, otype=options.otype) elif options.mo_set != False: data = extras.mo_set(qc, fid_mo_list, drv=options.drv, laplacian=options.laplacian, otype=options.otype) t.append(time.time()) # Final time good_bye_message(t) return data if options.gross_atomic_density is not None: atom = options.gross_atomic_density rho_atom = extras.numerical_mulliken_charges(atom, qc) if not grid.is_vector: mulliken_num = rho_atom[1] rho_atom = rho_atom[0] if not options.no_output: fid = '%s.h5' % options.outputname display('\nSaving to Hierarchical Data Format file (HDF5)...' + '\n\t%(o)s' % {'o': fid}) output.hdf5_write(fid, mode='w', gname='', atom=core.numpy.array(atom), geo_info=qc.geo_info, geo_spec=qc.geo_spec, gross_atomic_density=rho_atom, x=grid.x, y=grid.y, z=grid.z) if not options.is_vector: output.hdf5_write( fid, mode='a', gname='/numerical_mulliken_population_analysis', **mulliken_num) t.append(time.time()) good_bye_message(t) return rho_atom if options.mo_tefd is not None: mos = options.mo_tefd ao_list = core.ao_creator(qc.geo_spec, qc.ao_spec) mo_tefd = [] index = [] for i, j in mos: mo_tefd.append([]) index.append([]) for ii_d in options.drv: display('\nMO-TEFD: %s->%s %s-component' % (i, j, ii_d)) tefd = extras.mo_transition_flux_density(i, j, qc, drv=ii_d, ao_list=ao_list) mo_tefd[-1].append(tefd) index[-1].append('%s->%s:%s' % (i, j, ii_d)) if not options.no_output: from numpy import array fid = '%s.h5' % options.outputname display('\nSaving to Hierarchical Data Format file (HDF5)...' + '\n\t%(o)s' % {'o': fid}) HDF5_File = output.hdf5_open(fid, mode='w') data = { 'geo_info': array(qc.geo_info), 'geo_spec': array(qc.geo_spec), 'mo_tefd:info': array(index), 'mo_tefd': array(mo_tefd), 'x': grid.x, 'y': grid.y, 'z': grid.z } output.hdf5_append(data, HDF5_File, name='') HDF5_File.close() t.append(time.time()) good_bye_message(t) return mo_tefd t.append(time.time()) # A new time step # Compute the (derivative of the) electron density if options.no_slice: data = core.rho_compute_no_slice(qc, drv=options.drv, laplacian=options.laplacian, return_components=False) else: data = core.rho_compute(qc, drv=options.drv, slice_length=options.slice_length, laplacian=options.laplacian, numproc=options.numproc) if options.drv is None: rho = data elif options.laplacian: rho, delta_rho, laplacian_rho = data else: rho, delta_rho = data # Compute the reduced electron density if requested if options.z_reduced_density: if grid.is_vector: display('\nSo far, reducing the density is not supported for ' + 'vector grids.\nSkipping the reduction...\n') elif options.drv is not None: display( '\nSo far, reducing the density is not supported for ' + 'the derivative of the density.\nSkipping the reduction...\n') else: from scipy import integrate display('\nReducing the density with respect to the z-axis.\n') rho = integrate.simps(rho, grid.x, dx=grid.delta_[0], axis=0, even='avg') rho = integrate.simps(rho, grid.y, dx=grid.delta_[1], axis=0, even='avg') t.append(time.time()) # A new time step # Generate the output requested if not options.no_output: output_written = output.main_output(rho, qc.geo_info, qc.geo_spec, outputname=options.outputname, otype=options.otype, data_id='rho', omit=['vmd', 'mayavi'], mo_spec=qc.mo_spec) if options.drv is not None: output_written.extend( output.main_output(delta_rho, qc.geo_info, qc.geo_spec, outputname=options.outputname, otype=options.otype, data_id='delta_rho', omit=['vmd', 'mayavi'], mo_spec=qc.mo_spec, drv=options.drv)) if options.laplacian: output_written.extend( output.main_output(laplacian_rho, qc.geo_info, qc.geo_spec, outputname=options.outputname + '_laplacian', otype=options.otype, data_id='laplacian_rho', omit=['vmd', 'mayavi'], mo_spec=qc.mo_spec)) if 'vmd' in options.otype: # Create VMD network display('\nCreating VMD network file...' + '\n\t%(o)s.vmd' % {'o': options.outputname}) cube_files = [] for i in output_written: if i.endswith('.cb'): cube_files.append(i) output.vmd_network_creator(options.outputname, cube_files=cube_files) t.append(time.time()) # Final time good_bye_message(t) if 'mayavi' in options.otype: plt_data = [rho] datalabels = ['rho'] if options.drv is not None: plt_data.extend(delta_rho) datalabels.extend( ['d/d%s of %s' % (ii_d, 'rho') for ii_d in options.drv]) if options.laplacian: plt_data.append(laplacian_rho) datalabels.append('laplacian of rho') output.main_output(plt_data, qc.geo_info, qc.geo_spec, otype='mayavi', datalabels=datalabels) # Return the computed data, i.e., rho for standard, and (rho,delta_rho) # for derivative calculations. For laplacian (rho,delta_rho,laplacian_rho) return data
Here, we implement the reduced density gradient as proposed by Johnson et al., J. Am. Chem. Soc. 132, 6498 (2010). ''' from orbkit import read, grid, display, core, output ''' Identify the non-covalent interaction regions using the reduced density gradient ''' # open molden file and read parameters qc = read.main_read('h2o_dimer.molden',itype='molden') # Adjust the grid parameters to the molecular structure grid.adjust_to_geo(qc,extend=1.0,step=0.1) # initialize grid grid.grid_init() # print grid information display.display(grid.get_grid()) # Run orbkit rho,delta_rho = core.rho_compute(qc,drv=['x','y','z'],numproc=4) # Compute the reduced density gradient from numpy import sqrt,pi s = (1./(2*(3*pi**2)**(1/3.)) * sqrt((delta_rho**2).sum(axis=0))/(rho**(4/3.))) # Apply a density cutoff, i.e., consider only values for rho < 0.05 a.u. s[rho>0.05] = 1e3
def run_orbkit(use_qc=None,check_options=True,standalone=False): '''Controls the execution of all computational tasks. **Parameters:** use_qc : QCinfo, optional If not None, the reading of a quantum chemistry output is omitted and the given QCinfo class is used for all computational tasks. (See :ref:`Central Variables` in the manual for details on QCinfo.) check_options : bool, optional If True, the specified options will be validated. **Returns:** data : type and shape depend on the options. Contains orbkit's output. See :ref:`High-Level Interface` in the manual for details. ''' # Set some global variables global qc # Display program information display(lgpl_short) # Check for the correctness of orbkit.options if check_options: display('Checking orbkit.options...\n') options.check_options(display=display, interactive=False, info=True,check_io=(use_qc is None)) # Measurement of required execution time t=[time.time()] # Do we need to read out the info of all MOs? if (options.mo_set or options.calc_mo) is not False: options.all_mo = True if use_qc is None: # Read the input file qc = read.main_read(options.filename, itype=options.itype, all_mo=options.all_mo, spin=options.spin, cclib_parser=options.cclib_parser) else: # Use a user defined QCinfo class. qc = use_qc if 'native' in options.otype: output.main_output(qc, outputname=options.outputname, otype='native', ftype=options.niotype) options.otype.remove('native') if not len(options.otype): t.append(time.time()) # Final time good_bye_message(t) return display('\nSetting up the grid...') if options.grid_file is not None: # Read the grid from an external file grid.read(options.grid_file) elif options.adjust_grid is not None: # Adjust the grid to geo_spec extend,step = options.adjust_grid grid.adjust_to_geo(qc,extend=extend,step=step) elif options.random_grid: # Create a randomized grid grid.random_grid(qc.geo_spec) # Initialize grid grid.grid_init(is_vector=options.is_vector) if options.is_vector: grid.is_regular = False display(grid.get_grid()) # Display the grid if not grid.is_regular and options.center_grid is not None: raise IOError('The option --center is only supported for regular grids.') elif options.center_grid is not None: atom = grid.check_atom_select(options.center_grid,qc.geo_info,qc.geo_spec, interactive=True,display=display) # Center the grid to a specific atom and (0,0,0) if requested grid.center_grid(qc.geo_spec[atom-1],display=display) if check_options or standalone: options.check_grid_output_compatibilty() t.append(time.time()) # A new time step # The calculation of all AOs (--calc_ao) if options.calc_ao != False: data = extras.calc_ao(qc, drv=options.drv, otype=options.otype) t.append(time.time()) # Final time good_bye_message(t) return data # The calculation of selected MOs (--calc_mo) or # the density formed by selected MOs (--mo_set) if (options.mo_set or options.calc_mo) != False: # What should the program do? if options.calc_mo != False: fid_mo_list = options.calc_mo elif options.mo_set != False: fid_mo_list = options.mo_set # Call the function for actual calculation if options.calc_mo != False: data = extras.calc_mo(qc, fid_mo_list, drv=options.drv, otype=options.otype) elif options.mo_set != False: data = extras.mo_set(qc, fid_mo_list, drv=options.drv, laplacian=options.laplacian, otype=options.otype) t.append(time.time()) # Final time good_bye_message(t) return data if options.gross_atomic_density is not None: rho_atom = extras.gross_atomic_density(options.gross_atomic_density,qc, drv=options.drv) if not options.no_output: output_written = output.main_output(rho_atom, qc, outputname=options.outputname, otype=options.otype) t.append(time.time()) good_bye_message(t) return rho_atom t.append(time.time()) # A new time step # Compute the (derivative of the) electron density if options.no_slice: data = core.rho_compute_no_slice(qc, drv=options.drv, laplacian=options.laplacian, return_components = False) else: data = core.rho_compute(qc, drv=options.drv, slice_length=options.slice_length, laplacian=options.laplacian, numproc=options.numproc) if options.drv is None: rho = data elif options.laplacian: rho, delta_rho, laplacian_rho = data else: rho, delta_rho = data t.append(time.time()) # A new time step # Generate the output requested if not options.no_output: if not (options.drv is not None or options.laplacian): plt_data = rho datalabels = 'rho' else: plt_data = [rho] datalabels = ['rho'] if options.drv is not None: plt_data.extend(delta_rho) datalabels.extend(['d/d%s of %s' % (ii_d,'rho') for ii_d in options.drv]) if options.laplacian: plt_data.append(laplacian_rho) datalabels.append('laplacian of rho') output.main_output(plt_data,qc,outputname=options.outputname, otype=options.otype,datalabels=datalabels) t.append(time.time()) # Final time good_bye_message(t) # Return the computed data, i.e., rho for standard, and (rho,delta_rho) # for derivative calculations. For laplacian (rho,delta_rho,laplacian_rho) return data
# Name of input and output files fid_in = 'h2+.molden' # Choose the molecular orbitals to be calculated selected_MO = ['1.1_a', '1.5_a'] # number of processes and points per process numproc = 2 slice_length = 1e4 # Open molden file and read parameters qc = read.main_read(fid_in, itype='molden', all_mo=True) # Set grid parameters grid.adjust_to_geo(qc, extend=5.0, step=0.5) # Initialize grid grid.grid_init() # Print grid information display.display(grid.get_grid()) # Choose the molecular orbitals to be calculated selected_MO = ['1.1_a', '1.5_a'] qc.mo_spec = read.mo_select(qc.mo_spec, selected_MO, strict=True)['mo_spec'] # Calculate molecular orbitals mo_list = core.rho_compute(qc, calc_mo=True, slice_length=slice_length, drv=None, numproc=numproc)
import os, inspect from orbkit import read from orbkit.core import rho_compute from orbkit.test.tools import equal from orbkit import grid from orbkit import options options.quiet = True tests_home = os.path.dirname(inspect.getfile(inspect.currentframe())) folder = os.path.join(tests_home, '../outputs_for_testing/molpro') filepath = os.path.join(folder, 'h2o_rhf_sph.molden') qc = read.main_read(filepath, all_mo=True) grid.adjust_to_geo(qc, extend=2.0, step=1) grid.grid_init(is_vector=False, force=True) drv = [None, 'x', 'y', 'z', 'xx', 'xy', 'xz', 'yy', 'yz', 'zz'] data = [] for i in range(2): if i: grid.grid2vector() data.append([ rho_compute(qc, slice_length=0), rho_compute(qc, numproc=options.numproc), rho_compute(qc, laplacian=True, slice_length=0)[-1], rho_compute(qc, laplacian=True, numproc=options.numproc)[-1], rho_compute(qc, calc_mo=True, drv=drv, slice_length=0), rho_compute(qc, calc_mo=True, drv=drv, numproc=options.numproc) ])