Пример #1
0
def _init_ORB_grid(data, grid_par=-6, over_s=7):
    u"""Initializes ORBKIT's grid and returns necessary data for visualization.

    **Parameters:**
      data : dict
    QCinfo instance representing the molecule.
      grid_par : int
    Parameter controlling grid. If positive or zero, it specifies number of points; otherwise it specifies the resolution in inverse atomic units.
      over_s : int|float
    Oversizing, to be tuned

    **Returns**
      X, Y, Z
    Meshgrid (as returned by numpy.mgrid) for positioning the voxels.
    """

    from orbkit import grid

    ## Reinitialization of the grid
    grid.is_initialized = False

    ## Spacing/Number of points
    if grid_par > 0:
        grid.N_ = [grid_par] * 3
    elif grid_par == 0:
        grid.N_ = [80] * 3
    else:
        grid.delta_ = [1.0 / (-grid_par)] * 3

    grid.max_ = np.amax(data.geo_spec, axis=0) + over_s
    grid.min_ = np.amin(data.geo_spec, axis=0) - over_s

    grid.adjust_to_geo(data, extend=over_s, step=grid.delta_[0])
    grid.init(force=True)

    ## The meshgrid MUST be generated in this manner,
    ## in order to be maximally consistent with ORBKIT
    ## which uses numpy.arange to generate its grid
    ## (i.e. start:stop+step:step)
    X, Y, Z = np.mgrid[grid.min_[0]:grid.max_[0] +
                       grid.delta_[0]:grid.delta_[0],
                       grid.min_[1]:grid.max_[1] +
                       grid.delta_[1]:grid.delta_[1],
                       grid.min_[2]:grid.max_[2] +
                       grid.delta_[2]:grid.delta_[2]]
    ## NOTICE: numpy.arange does not return consistent results if step is a float,
    ## specifically if (stop - start)/step overflows, resulting in
    ## arange(start, stop, step)[-1] > stop

    return X, Y, Z
Пример #2
0
    def orbkit_grid(self, qc):

        # Initialize grid
        grid.adjust_to_geo(qc, extend=5.0, step=0.4)
        grid.grid_init(force=True)
        self.slice_length = grid.N_[1] * grid.N_[2] / 2
Пример #3
0
def run_orbkit(use_qc=None, check_options=True, standalone=False):
    '''Controls the execution of all computational tasks.
  
  **Parameters:**
  
  use_qc : QCinfo, optional
    If not None, the reading of a quantum chemistry output is omitted and
    the given QCinfo class is used for all computational tasks. 
    (See :ref:`Central Variables` in the manual for details on QCinfo.) 
  check_options : bool, optional
    If True, the specified options will be validated. 
  
  **Returns:**
  
  data : type and shape depend on the options.
    Contains orbkit's output. 
    See :ref:`High-Level Interface` in the manual for details.
  '''
    # Set some global variables
    global qc

    # Display program information
    display(lgpl_short)

    # Check for the correctness of orbkit.options
    if check_options:
        display('Checking orbkit.options...\n')
        options.check_options(display=display,
                              interactive=False,
                              info=True,
                              check_io=(use_qc is None))

    # Measurement of required execution time
    t = [time.time()]

    # Do we need to read out the info of all MOs?
    if (options.mo_set or options.calc_mo) is not False:
        options.all_mo = True

    if use_qc is None:
        # Read the input file
        qc = read.main_read(options.filename,
                            itype=options.itype,
                            all_mo=options.all_mo,
                            spin=options.spin,
                            cclib_parser=options.cclib_parser)
    else:
        # Use a user defined QCinfo class.
        qc = use_qc

    display('\nSetting up the grid...')
    if options.grid_file is not None:
        # Read the grid from an external file
        grid.read(options.grid_file)
    elif options.adjust_grid is not None:
        # Adjust the grid to geo_spec
        extend, step = options.adjust_grid
        grid.adjust_to_geo(qc, extend=extend, step=step)
    elif options.random_grid:
        # Create a randomized grid
        grid.random_grid(qc.geo_spec)

    # Initialize grid
    grid.grid_init(is_vector=options.is_vector)
    if options.is_vector:
        grid.is_regular = False
    display(grid.get_grid())  # Display the grid

    if not grid.is_regular and options.center_grid is not None:
        raise IOError(
            'The option --center is only supported for regular grids.')
    elif options.center_grid is not None:
        atom = grid.check_atom_select(options.center_grid,
                                      qc.geo_info,
                                      qc.geo_spec,
                                      interactive=True,
                                      display=display)
        # Center the grid to a specific atom and (0,0,0) if requested
        grid.center_grid(qc.geo_spec[atom - 1], display=display)

    if check_options or standalone:
        options.check_grid_output_compatibilty()

    t.append(time.time())  # A new time step

    # The calculation of all AOs (--calc_ao)
    if options.calc_ao != False:
        data = extras.calc_ao(qc, drv=options.drv, otype=options.otype)

        t.append(time.time())  # Final time
        good_bye_message(t)
        return data

    # The calculation of selected MOs (--calc_mo) or
    # the density formed by selected MOs (--mo_set)
    if (options.mo_set or options.calc_mo) != False:
        # What should the program do?
        if options.calc_mo != False:
            fid_mo_list = options.calc_mo
        elif options.mo_set != False:
            fid_mo_list = options.mo_set

        # Call the function for actual calculation
        if options.calc_mo != False:
            data = extras.calc_mo(qc,
                                  fid_mo_list,
                                  drv=options.drv,
                                  otype=options.otype)
        elif options.mo_set != False:
            data = extras.mo_set(qc,
                                 fid_mo_list,
                                 drv=options.drv,
                                 laplacian=options.laplacian,
                                 otype=options.otype)

        t.append(time.time())  # Final time
        good_bye_message(t)
        return data

    if options.gross_atomic_density is not None:
        atom = options.gross_atomic_density
        rho_atom = extras.numerical_mulliken_charges(atom, qc)

        if not grid.is_vector:
            mulliken_num = rho_atom[1]
            rho_atom = rho_atom[0]

        if not options.no_output:
            fid = '%s.h5' % options.outputname
            display('\nSaving to Hierarchical Data Format file (HDF5)...' +
                    '\n\t%(o)s' % {'o': fid})
            output.hdf5_write(fid,
                              mode='w',
                              gname='',
                              atom=core.numpy.array(atom),
                              geo_info=qc.geo_info,
                              geo_spec=qc.geo_spec,
                              gross_atomic_density=rho_atom,
                              x=grid.x,
                              y=grid.y,
                              z=grid.z)
            if not options.is_vector:
                output.hdf5_write(
                    fid,
                    mode='a',
                    gname='/numerical_mulliken_population_analysis',
                    **mulliken_num)

        t.append(time.time())
        good_bye_message(t)
        return rho_atom

    if options.mo_tefd is not None:
        mos = options.mo_tefd
        ao_list = core.ao_creator(qc.geo_spec, qc.ao_spec)
        mo_tefd = []
        index = []
        for i, j in mos:
            mo_tefd.append([])
            index.append([])
            for ii_d in options.drv:
                display('\nMO-TEFD: %s->%s %s-component' % (i, j, ii_d))
                tefd = extras.mo_transition_flux_density(i,
                                                         j,
                                                         qc,
                                                         drv=ii_d,
                                                         ao_list=ao_list)
                mo_tefd[-1].append(tefd)
                index[-1].append('%s->%s:%s' % (i, j, ii_d))

        if not options.no_output:
            from numpy import array
            fid = '%s.h5' % options.outputname
            display('\nSaving to Hierarchical Data Format file (HDF5)...' +
                    '\n\t%(o)s' % {'o': fid})
            HDF5_File = output.hdf5_open(fid, mode='w')
            data = {
                'geo_info': array(qc.geo_info),
                'geo_spec': array(qc.geo_spec),
                'mo_tefd:info': array(index),
                'mo_tefd': array(mo_tefd),
                'x': grid.x,
                'y': grid.y,
                'z': grid.z
            }
            output.hdf5_append(data, HDF5_File, name='')
            HDF5_File.close()

        t.append(time.time())
        good_bye_message(t)
        return mo_tefd

    t.append(time.time())  # A new time step

    # Compute the (derivative of the) electron density
    if options.no_slice:
        data = core.rho_compute_no_slice(qc,
                                         drv=options.drv,
                                         laplacian=options.laplacian,
                                         return_components=False)

    else:
        data = core.rho_compute(qc,
                                drv=options.drv,
                                slice_length=options.slice_length,
                                laplacian=options.laplacian,
                                numproc=options.numproc)
    if options.drv is None:
        rho = data
    elif options.laplacian:
        rho, delta_rho, laplacian_rho = data
    else:
        rho, delta_rho = data

    # Compute the reduced electron density if requested
    if options.z_reduced_density:
        if grid.is_vector:
            display('\nSo far, reducing the density is not supported for ' +
                    'vector grids.\nSkipping the reduction...\n')
        elif options.drv is not None:
            display(
                '\nSo far, reducing the density is not supported for ' +
                'the derivative of the density.\nSkipping the reduction...\n')
        else:
            from scipy import integrate
            display('\nReducing the density with respect to the z-axis.\n')
            rho = integrate.simps(rho,
                                  grid.x,
                                  dx=grid.delta_[0],
                                  axis=0,
                                  even='avg')
            rho = integrate.simps(rho,
                                  grid.y,
                                  dx=grid.delta_[1],
                                  axis=0,
                                  even='avg')

    t.append(time.time())  # A new time step

    # Generate the output requested
    if not options.no_output:
        output_written = output.main_output(rho,
                                            qc.geo_info,
                                            qc.geo_spec,
                                            outputname=options.outputname,
                                            otype=options.otype,
                                            data_id='rho',
                                            omit=['vmd', 'mayavi'],
                                            mo_spec=qc.mo_spec)
        if options.drv is not None:
            output_written.extend(
                output.main_output(delta_rho,
                                   qc.geo_info,
                                   qc.geo_spec,
                                   outputname=options.outputname,
                                   otype=options.otype,
                                   data_id='delta_rho',
                                   omit=['vmd', 'mayavi'],
                                   mo_spec=qc.mo_spec,
                                   drv=options.drv))
        if options.laplacian:
            output_written.extend(
                output.main_output(laplacian_rho,
                                   qc.geo_info,
                                   qc.geo_spec,
                                   outputname=options.outputname +
                                   '_laplacian',
                                   otype=options.otype,
                                   data_id='laplacian_rho',
                                   omit=['vmd', 'mayavi'],
                                   mo_spec=qc.mo_spec))
        if 'vmd' in options.otype:
            # Create VMD network
            display('\nCreating VMD network file...' +
                    '\n\t%(o)s.vmd' % {'o': options.outputname})
            cube_files = []
            for i in output_written:
                if i.endswith('.cb'):
                    cube_files.append(i)
            output.vmd_network_creator(options.outputname,
                                       cube_files=cube_files)

    t.append(time.time())  # Final time

    good_bye_message(t)

    if 'mayavi' in options.otype:
        plt_data = [rho]
        datalabels = ['rho']
        if options.drv is not None:
            plt_data.extend(delta_rho)
            datalabels.extend(
                ['d/d%s of %s' % (ii_d, 'rho') for ii_d in options.drv])
        if options.laplacian:
            plt_data.append(laplacian_rho)
            datalabels.append('laplacian of rho')
        output.main_output(plt_data,
                           qc.geo_info,
                           qc.geo_spec,
                           otype='mayavi',
                           datalabels=datalabels)

    # Return the computed data, i.e., rho for standard, and (rho,delta_rho)
    # for derivative calculations. For laplacian (rho,delta_rho,laplacian_rho)
    return data
Here, we implement the reduced density gradient as proposed by 
Johnson et al., J. Am. Chem. Soc. 132, 6498 (2010).
'''

from orbkit import read, grid, display, core, output

'''
Identify the non-covalent interaction regions 
using the reduced density gradient
'''

# open molden file and read parameters
qc = read.main_read('h2o_dimer.molden',itype='molden')

# Adjust the grid parameters to the molecular structure
grid.adjust_to_geo(qc,extend=1.0,step=0.1)
# initialize grid
grid.grid_init()
# print grid information
display.display(grid.get_grid())

# Run orbkit
rho,delta_rho = core.rho_compute(qc,drv=['x','y','z'],numproc=4)

# Compute the reduced density gradient 
from numpy import sqrt,pi
s = (1./(2*(3*pi**2)**(1/3.)) * sqrt((delta_rho**2).sum(axis=0))/(rho**(4/3.)))

# Apply a density cutoff, i.e., consider only values for rho < 0.05 a.u.
s[rho>0.05] = 1e3
Пример #5
0
def run_orbkit(use_qc=None,check_options=True,standalone=False):
  '''Controls the execution of all computational tasks.
  
  **Parameters:**
  
  use_qc : QCinfo, optional
    If not None, the reading of a quantum chemistry output is omitted and
    the given QCinfo class is used for all computational tasks. 
    (See :ref:`Central Variables` in the manual for details on QCinfo.) 
  check_options : bool, optional
    If True, the specified options will be validated. 
  
  **Returns:**
  
  data : type and shape depend on the options.
    Contains orbkit's output. 
    See :ref:`High-Level Interface` in the manual for details.
  '''
  # Set some global variables
  global qc
  
  # Display program information
  display(lgpl_short)
  
  # Check for the correctness of orbkit.options
  if check_options:
    display('Checking orbkit.options...\n')
    options.check_options(display=display,
                          interactive=False,
                          info=True,check_io=(use_qc is None))
  
  # Measurement of required execution time
  t=[time.time()]
  
  # Do we need to read out the info of all MOs?  
  if (options.mo_set or options.calc_mo) is not False: 
    options.all_mo = True
  
  if use_qc is None:  
    # Read the input file
    qc = read.main_read(options.filename,
                        itype=options.itype,
                        all_mo=options.all_mo,
                        spin=options.spin,
                        cclib_parser=options.cclib_parser)
  else:
    # Use a user defined QCinfo class.
    qc = use_qc

  if 'native' in options.otype:
    output.main_output(qc, outputname=options.outputname, otype='native', ftype=options.niotype)
    options.otype.remove('native')
    if not len(options.otype):
      t.append(time.time()) # Final time
      good_bye_message(t)
      return
  
  display('\nSetting up the grid...')
  if options.grid_file is not None: 
    # Read the grid from an external file
    grid.read(options.grid_file)
  elif options.adjust_grid is not None:
    # Adjust the grid to geo_spec 
    extend,step = options.adjust_grid      
    grid.adjust_to_geo(qc,extend=extend,step=step)  
  elif options.random_grid:
    # Create a randomized grid
    grid.random_grid(qc.geo_spec)
  
  # Initialize grid
  grid.grid_init(is_vector=options.is_vector)
  if options.is_vector:
    grid.is_regular = False
  display(grid.get_grid())   # Display the grid
  
  if not grid.is_regular and options.center_grid is not None:
    raise IOError('The option --center is only supported for regular grids.')
  elif options.center_grid is not None:
    atom = grid.check_atom_select(options.center_grid,qc.geo_info,qc.geo_spec,
                                  interactive=True,display=display)
    # Center the grid to a specific atom and (0,0,0) if requested
    grid.center_grid(qc.geo_spec[atom-1],display=display)
  
  if check_options or standalone:
    options.check_grid_output_compatibilty()
    
  t.append(time.time()) # A new time step
  
  # The calculation of all AOs (--calc_ao)
  if options.calc_ao != False:
    data = extras.calc_ao(qc,
                          drv=options.drv,
                          otype=options.otype)
    t.append(time.time()) # Final time
    good_bye_message(t)
    return data
  
  # The calculation of selected MOs (--calc_mo) or 
  # the density formed by selected MOs (--mo_set)
  if (options.mo_set or options.calc_mo) != False: 
    # What should the program do?
    if options.calc_mo != False:
      fid_mo_list = options.calc_mo
    elif options.mo_set != False:
      fid_mo_list = options.mo_set
    
    # Call the function for actual calculation 
    if options.calc_mo != False:
      data = extras.calc_mo(qc,
                            fid_mo_list,
                            drv=options.drv,
                            otype=options.otype)
    elif options.mo_set != False: 
      data = extras.mo_set(qc,
                           fid_mo_list,
                           drv=options.drv,
                           laplacian=options.laplacian,
                           otype=options.otype)
    
    t.append(time.time()) # Final time
    good_bye_message(t)
    return data


  if options.gross_atomic_density is not None:
    rho_atom = extras.gross_atomic_density(options.gross_atomic_density,qc,
                                           drv=options.drv)

    if not options.no_output:
      output_written = output.main_output(rho_atom,
                                          qc,
                                          outputname=options.outputname,
                                          otype=options.otype)
    t.append(time.time())
    good_bye_message(t)
    return rho_atom
  
  t.append(time.time()) # A new time step
  
  # Compute the (derivative of the) electron density 
  if options.no_slice:
    data = core.rho_compute_no_slice(qc,
                                     drv=options.drv,
                                     laplacian=options.laplacian,
                                     return_components = False)
  
  else:
    data = core.rho_compute(qc,
                            drv=options.drv,
                            slice_length=options.slice_length,
                            laplacian=options.laplacian,
                            numproc=options.numproc)
  if options.drv is None:
    rho = data
  elif options.laplacian:
    rho, delta_rho, laplacian_rho = data    
  else:
    rho, delta_rho = data
    
  t.append(time.time()) # A new time step

  # Generate the output requested 
  if not options.no_output:
    if not (options.drv is not None or options.laplacian):
      plt_data = rho
      datalabels = 'rho'
    else:
      plt_data = [rho]
      datalabels = ['rho']
      if options.drv is not None:
        plt_data.extend(delta_rho)    
        datalabels.extend(['d/d%s of %s' % (ii_d,'rho') for ii_d in options.drv])
      if options.laplacian:
        plt_data.append(laplacian_rho)
        datalabels.append('laplacian of rho')
    output.main_output(plt_data,qc,outputname=options.outputname,
                       otype=options.otype,datalabels=datalabels)
    
  t.append(time.time()) # Final time
  
  good_bye_message(t)
  
  # Return the computed data, i.e., rho for standard, and (rho,delta_rho)  
  # for derivative calculations. For laplacian (rho,delta_rho,laplacian_rho) 
  return data
Пример #6
0
# Name of input and output files
fid_in = 'h2+.molden'

# Choose the molecular orbitals to be calculated
selected_MO = ['1.1_a', '1.5_a']

# number of processes and points per process
numproc = 2
slice_length = 1e4

# Open molden file and read parameters
qc = read.main_read(fid_in, itype='molden', all_mo=True)

# Set grid parameters
grid.adjust_to_geo(qc, extend=5.0, step=0.5)
# Initialize grid
grid.grid_init()
# Print grid information
display.display(grid.get_grid())

# Choose the molecular orbitals to be calculated
selected_MO = ['1.1_a', '1.5_a']
qc.mo_spec = read.mo_select(qc.mo_spec, selected_MO, strict=True)['mo_spec']

# Calculate molecular orbitals
mo_list = core.rho_compute(qc,
                           calc_mo=True,
                           slice_length=slice_length,
                           drv=None,
                           numproc=numproc)
Пример #7
0
import os, inspect

from orbkit import read
from orbkit.core import rho_compute
from orbkit.test.tools import equal
from orbkit import grid
from orbkit import options

options.quiet = True

tests_home = os.path.dirname(inspect.getfile(inspect.currentframe()))
folder = os.path.join(tests_home, '../outputs_for_testing/molpro')
filepath = os.path.join(folder, 'h2o_rhf_sph.molden')
qc = read.main_read(filepath, all_mo=True)

grid.adjust_to_geo(qc, extend=2.0, step=1)
grid.grid_init(is_vector=False, force=True)

drv = [None, 'x', 'y', 'z', 'xx', 'xy', 'xz', 'yy', 'yz', 'zz']
data = []
for i in range(2):
    if i: grid.grid2vector()
    data.append([
        rho_compute(qc, slice_length=0),
        rho_compute(qc, numproc=options.numproc),
        rho_compute(qc, laplacian=True, slice_length=0)[-1],
        rho_compute(qc, laplacian=True, numproc=options.numproc)[-1],
        rho_compute(qc, calc_mo=True, drv=drv, slice_length=0),
        rho_compute(qc, calc_mo=True, drv=drv, numproc=options.numproc)
    ])