Пример #1
0
    wkt = src_ds.GetProjection()
    if wkt != '':
        dst_ds.SetProjection(wkt)
    dst_ds.SetGeoTransform(src_ds.GetGeoTransform())

    dstband = dst_ds.GetRasterBand(1)
    CopyBand(srcband, dstband)

else:
    dstband = srcband

# =============================================================================
#	Invoke algorithm.
# =============================================================================

if quiet_flag:
    prog_func = None
else:
    prog_func = gdal.TermProgress

result = gdal.FillNodata(dstband,
                         maskband,
                         max_distance,
                         smoothing_iterations,
                         options,
                         callback=prog_func)

src_ds = None
dst_ds = None
mask_ds = None
Пример #2
0
def warp_ds(ds,
            src_crs,
            new_cell_size=None,
            dst_crs=None,
            var_name='rain',
            xname='longitude',
            yname='latitude',
            tname='time',
            resampling_alg=gdal.GRA_CubicSpline):
    from tqdm import tqdm
    # todo: not sure what happens if the order of co-ordinates in the source xarray
    # does not match the order expected here (time, latitude, longitude)
    x_size, y_size = ds.dims[xname], ds.dims[yname]
    if not new_cell_size:
        new_cell_size = (x_size, y_size)
    if not dst_crs:
        dst_crs = src_crs
    time_size = ds.dims[tname]

    ds_src_transform = get_transform(ds, x_coords=xname, y_coords=yname)
    west, south, east, north = array_bounds(height=y_size,
                                            width=x_size,
                                            transform=ds_src_transform)
    src_ds = create_mem_src(x_size, y_size, ds_src_transform, src_crs)
    dst_transform, dst_width, dst_height = calculate_default_transform(
        src_crs=src_crs,
        dst_crs=dst_crs,
        width=x_size,
        height=y_size,
        left=west,
        bottom=south,
        right=east,
        top=north,
        resolution=(new_cell_size, new_cell_size))
    out_bounds = array_bounds(height=dst_height,
                              width=dst_width,
                              transform=dst_transform)

    wrapopts = gdal.WarpOptions(xRes=new_cell_size,
                                yRes=new_cell_size,
                                srcSRS=src_crs.to_wkt(),
                                dstSRS=dst_crs.to_wkt(),
                                outputBounds=out_bounds,
                                resampleAlg=resampling_alg,
                                dstNodata=np.nan)
    new_xs, new_ys = return_coords(dst_transform, dst_width, dst_height)
    time_values = times = ds.indexes[tname]
    warped_data = np.zeros((time_size, dst_height, dst_width))
    for ti, tvalue in tqdm(list(enumerate(ds.indexes[tname]))):
        data = ds[var_name][ti, ...].values.copy()
        src_ds.GetRasterBand(1).WriteArray(data)
        tb = src_ds.GetRasterBand(1)
        gdal.FillNodata(tb,
                        maskBand=None,
                        maxSearchDist=6,
                        smoothingIterations=0)
        _ = tb.ReadAsArray()
        warp_ras = gdal.Warp(r"/vsimem/wrap_singletimestamp.tiff",
                             src_ds,
                             options=wrapopts)
        warped_slice = warp_ras.GetRasterBand(1).ReadAsArray().copy()
        if warped_slice.shape != (dst_height, dst_width):
            raise ValueError(warped_slice.shape, (dst_height, dst_width))
        warped_data[ti, ...] = warped_slice
        del warp_ras
    warped_ds = xr.DataArray(warped_data,
                             coords=[times, new_ys, new_xs],
                             dims=[tname, yname, xname])
    return warped_ds
Пример #3
0
def fill_nodata(input_path,
                mask_path,
                output_path,
                max_distance=0,
                smoothing_iterations=0,
                options=[],
                driver="HFA",
                desired_nodata=-9999,
                quiet=False):
    """
  This function mimicks the gdal_fillnodata.py script because it's heavily based on it.
  Basically I just added more logging to fit it into this project.
  """

    logger.info('input: {0}'.format(input_path))
    logger.info('mask: {0}'.format(mask_path))
    logger.info('output: {0}'.format(output_path))

    # Open the MHHW tile as read-only and get the driver GDAL is using to access the data
    input_fh = gdal.Open(input_path, gdal.GA_ReadOnly)
    input_driver = input_fh.GetDriver()

    # Open the mask tile as read-only and get the driver GDAL is using to access the data
    mask_fh = gdal.Open(mask_path, gdal.GA_ReadOnly)
    mask_driver = mask_fh.GetDriver()
    mask_band = mask_fh.GetRasterBand(1)  # Get the raster band

    # Pull Metadata associated with the LIDAR tile so we can create the output raster later
    geotransform = input_fh.GetGeoTransform()
    projection = input_fh.GetProjection()
    cols = input_fh.RasterXSize  # Get the number of columns
    rows = input_fh.RasterYSize  # Get the number of rows
    logger.info("  cols: {0}".format(cols))
    logger.info("  rows: {0}".format(rows))
    input_data = input_fh.GetRasterBand(1)  # Get the raster band
    original_nodata = input_data.GetNoDataValue(
    )  # Get the NoData value so we can set our mask
    logger.info("  original nodata value: {0}".format(original_nodata))

    # Create a copy of the data using in the input tile as an example.
    logger.info("  Creating new raster...")
    output_driver = gdal.GetDriverByName(driver)  # Setup the output driver
    output_fh = output_driver.Create(output_path, cols, rows, 1,
                                     gdal.GDT_CFloat32)
    output_fh.SetGeoTransform(geotransform)
    output_fh.SetProjection(projection)
    output_band = output_fh.GetRasterBand(1)
    output_band.SetNoDataValue(9)
    logger.info("    done.")

    logger.info("  copying band to destination file...")
    gm_gdal.CopyBand(input_data, output_band)
    logger.info("    done.")

    # Suppress progress report if we ask for quiet behavior
    if quiet:
        prog_func = None
    else:
        prog_func = gdal.TermProgress

    logger.info("  Running FillNodata()...")
    result = gdal.FillNodata(output_band,
                             mask_band,
                             max_distance,
                             smoothing_iterations,
                             options,
                             callback=prog_func)
    logger.info("    done.")

    # Compute Statistics before closing out the dataset
    logger.info("  Computing stats...")
    try:
        output_band.ComputeStatistics(False)
    except RuntimeError:
        logger.warn("    Cannot compute statistics.")
    logger.info("    done.")

    logger.info("    cleanning up band...")
    output_band = None
    logger.info("    done.")

    logger.info("  Building blocks...")
    output_fh.BuildOverviews(overviewlist=[2, 4, 8, 16, 32, 64, 128])
    logger.info("    done.")

    logger.info("  Flushing the cache...")
    output_fh.FlushCache()
    logger.info("    done.")

    logger.info("  closing mask bands and all file handlers...")
    output_fh = None
    mask_band = None
    input_fh = None
    logger.info("      done.")

    return result