def test_sinhasinh(): logger.info("Test SinhAsinh-Distribution") model = Models.Fit1D(signal=Models.SinhAsinh_pdf('SASH', mass=mass, mean=signal_gauss.mean), background=Models.Bkg_pdf('BkgSAS', mass=mass, power=0)) signal = model.signal model.s.setVal(5000) model.b.setVal(500) signal.mu.setVal(3.10) signal.sigma.setVal(0.015) signal.epsilon.setVal(0.021) signal.delta.setVal(1.0) with rooSilent(): result, f = model.fitTo(dataset0) result, f = model.fitTo(dataset0) signal.delta.release() result, f = model.fitTo(dataset0) signal.epsilon.release() result, f = model.fitTo(dataset0) if 0 != result.status() or 3 != result.covQual(): logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % (result.status(), result.covQual())) print result else: logger.info('Signal & Background are: %-28s & %-28s ' % (result('S')[0], result('B')[0])) logger.info('Mu is: %-28s ' % result(signal.mu)[0]) logger.info('Sigma is: %-28s ' % result(signal.sigma)[0]) logger.info('Epsilon is: %-28s ' % result(signal.epsilon)[0]) logger.info('delta is: %-28s ' % result(signal.delta)[0]) models.add(model)
def test_sinhasinh(): logger.info("Test SinhAsinh-Distribution") model = Models.Fit1D(signal=Models.SinhAsinh_pdf('SASH', xvar=mass, mean=signal_gauss.mean), background=Models.Bkg_pdf('BkgSAS', xvar=mass, power=0), S=S, B=B) signal = model.signal model.S.setVal(5000) model.B.setVal(500) signal.mu.setVal(3.10) signal.sigma.setVal(0.015) signal.epsilon.setVal(0.021) signal.delta.setVal(1.0) with rooSilent(): result, f = model.fitTo(dataset0) result, f = model.fitTo(dataset0) signal.delta.release() result, f = model.fitTo(dataset0) signal.epsilon.release() result, f = model.fitTo(dataset0) model.draw(dataset0) if 0 != result.status() or 3 != result.covQual(): logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % (result.status(), result.covQual())) logger.info("SinhAsinh function\n%s" % result.table(prefix="# ")) models.add(model)