def __init__(self, xs, xt, M, manifold, a=None, b=None, reg_fidelity=1., reg_ot=1e-3, eps=1e-15, ot_solver='sinkhorn'): super(LossModule, self).__init__() self.M = deepcopy(M).detach_() self.xs_ = xs self.xt_ = xt self.ns_ = len(xs) self.nt_ = len(xt) self.manifold = manifold self.reg_fidelity = reg_fidelity self.reg_ot = reg_ot self.eps = eps self.ot_solver = ot_solver self.a = torch.FloatTensor(unif(self.ns_)) if a is None else a self.b = torch.FloatTensor(unif(self.nt_)) if b is None else b
def test_mapping_transport_class(nx, kernel, bias): """test_mapping_transport """ ns = 20 nt = 30 Xs, ys = make_data_classif('3gauss', ns) Xt, yt = make_data_classif('3gauss2', nt) Xs_new, _ = make_data_classif('3gauss', ns + 1) Xs, Xt, Xs_new = nx.from_numpy(Xs, Xt, Xs_new) # Mapping tests bias = bias == "biased" otda = ot.da.MappingTransport(kernel=kernel, bias=bias) otda.fit(Xs=Xs, Xt=Xt) assert hasattr(otda, "coupling_") assert hasattr(otda, "mapping_") assert hasattr(otda, "log_") assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) S = Xs.shape[0] if kernel == "gaussian" else Xs.shape[1] # if linear if bias: S += 1 assert_equal(otda.mapping_.shape, ((S, Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( nx.to_numpy(nx.sum(otda.coupling_, axis=0)), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( nx.to_numpy(nx.sum(otda.coupling_, axis=1)), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check everything runs well with log=True otda = ot.da.MappingTransport(kernel=kernel, bias=bias, log=True) otda.fit(Xs=Xs, Xt=Xt) assert len(otda.log_.keys()) != 0
def sinkhorn_cost(x, y, reg_ot=1., nx=None, ny=None, ys=None, yt=None, n_iter=100, manifold=None, normalization='max', wrapped_function=None, detach_x=False, detach_y=True, is_hyperbolic=False, match_targets=False): nx = len(x) if nx is None else nx ny = len(y) if ny is None else ny a = torch.FloatTensor(unif(nx)).detach() b = torch.FloatTensor(unif(ny)).detach() M = compute_cost(x, y, manifold=manifold, ys=ys, yt=yt, match_targets=match_targets, normalization=normalization, wrapped_function=wrapped_function, detach_x=detach_x, detach_y=detach_y, is_hyperbolic=is_hyperbolic) return sinkhorn_loss(a, b, M, epsilon=reg_ot, n_iter=n_iter, return_coupling=True)
def test_sinkhorn_l1l2_transport_class(): """test_sinkhorn_transport """ ns = 150 nt = 200 Xs, ys = make_data_classif('3gauss', ns) Xt, yt = make_data_classif('3gauss2', nt) otda = ot.da.SinkhornL1l2Transport() # test its computed otda.fit(Xs=Xs, ys=ys, Xt=Xt) assert hasattr(otda, "cost_") assert hasattr(otda, "coupling_") assert hasattr(otda, "log_") # test dimensions of coupling assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) Xs_new, _ = make_data_classif('3gauss', ns + 1) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # test inverse transform transp_Xt = otda.inverse_transform(Xt=Xt) assert_equal(transp_Xt.shape, Xt.shape) # check label propagation transp_yt = otda.transform_labels(ys) assert_equal(transp_yt.shape[0], yt.shape[0]) assert_equal(transp_yt.shape[1], len(np.unique(ys))) # check inverse label propagation transp_ys = otda.inverse_transform_labels(yt) assert_equal(transp_ys.shape[0], ys.shape[0]) assert_equal(transp_ys.shape[1], len(np.unique(yt))) Xt_new, _ = make_data_classif('3gauss2', nt + 1) transp_Xt_new = otda.inverse_transform(Xt=Xt_new) # check that the oos method is working assert_equal(transp_Xt_new.shape, Xt_new.shape) # test fit_transform transp_Xs = otda.fit_transform(Xs=Xs, ys=ys, Xt=Xt) assert_equal(transp_Xs.shape, Xs.shape) # test unsupervised vs semi-supervised mode otda_unsup = ot.da.SinkhornL1l2Transport() otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt) n_unsup = np.sum(otda_unsup.cost_) otda_semi = ot.da.SinkhornL1l2Transport() otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt) assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0]))) n_semisup = np.sum(otda_semi.cost_) # check that the cost matrix norms are indeed different assert n_unsup != n_semisup, "semisupervised mode not working" # check that the coupling forbids mass transport between labeled source # and labeled target samples mass_semi = np.sum( otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]) mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max] assert_allclose(mass_semi, np.zeros_like(mass_semi), rtol=1e-9, atol=1e-9) # check everything runs well with log=True otda = ot.da.SinkhornL1l2Transport(log=True) otda.fit(Xs=Xs, ys=ys, Xt=Xt) assert len(otda.log_.keys()) != 0
def test_jcpot_transport_class(): """test_jcpot_transport """ ns1 = 150 ns2 = 150 nt = 200 Xs1, ys1 = make_data_classif('3gauss', ns1) Xs2, ys2 = make_data_classif('3gauss', ns2) Xt, yt = make_data_classif('3gauss2', nt) Xs = [Xs1, Xs2] ys = [ys1, ys2] otda = ot.da.JCPOTTransport(reg_e=1, max_iter=10000, tol=1e-9, verbose=True, log=True) # test its computed otda.fit(Xs=Xs, ys=ys, Xt=Xt) assert hasattr(otda, "coupling_") assert hasattr(otda, "proportions_") assert hasattr(otda, "log_") # test dimensions of coupling for i, xs in enumerate(Xs): assert_equal(otda.coupling_[i].shape, ((xs.shape[0], Xt.shape[0]))) # test all margin constraints mu_t = unif(nt) for i in range(len(Xs)): # test margin constraints w.r.t. uniform target weights for each coupling matrix assert_allclose(np.sum(otda.coupling_[i], axis=0), mu_t, rtol=1e-3, atol=1e-3) # test margin constraints w.r.t. modified source weights for each source domain assert_allclose(np.dot(otda.log_['D1'][i], np.sum(otda.coupling_[i], axis=1)), otda.proportions_, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) [assert_equal(x.shape, y.shape) for x, y in zip(transp_Xs, Xs)] Xs_new, _ = make_data_classif('3gauss', ns1 + 1) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check label propagation transp_yt = otda.transform_labels(ys) assert_equal(transp_yt.shape[0], yt.shape[0]) assert_equal(transp_yt.shape[1], len(np.unique(ys))) # check inverse label propagation transp_ys = otda.inverse_transform_labels(yt) [assert_equal(x.shape[0], y.shape[0]) for x, y in zip(transp_ys, ys)] [ assert_equal(x.shape[1], len(np.unique(y))) for x, y in zip(transp_ys, ys) ]
def test_mapping_transport_class(): """test_mapping_transport """ ns = 60 nt = 120 Xs, ys = make_data_classif('3gauss', ns) Xt, yt = make_data_classif('3gauss2', nt) Xs_new, _ = make_data_classif('3gauss', ns + 1) ########################################################################## # kernel == linear mapping tests ########################################################################## # check computation and dimensions if bias == False otda = ot.da.MappingTransport(kernel="linear", bias=False) otda.fit(Xs=Xs, Xt=Xt) assert hasattr(otda, "coupling_") assert hasattr(otda, "mapping_") assert hasattr(otda, "log_") assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[1], Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check computation and dimensions if bias == True otda = ot.da.MappingTransport(kernel="linear", bias=True) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) ########################################################################## # kernel == gaussian mapping tests ########################################################################## # check computation and dimensions if bias == False otda = ot.da.MappingTransport(kernel="gaussian", bias=False) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[0], Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check computation and dimensions if bias == True otda = ot.da.MappingTransport(kernel="gaussian", bias=True) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check everything runs well with log=True otda = ot.da.MappingTransport(kernel="gaussian", log=True) otda.fit(Xs=Xs, Xt=Xt) assert len(otda.log_.keys()) != 0
def test_emd_transport_class(): """test_sinkhorn_transport """ ns = 150 nt = 200 Xs, ys = make_data_classif('3gauss', ns) Xt, yt = make_data_classif('3gauss2', nt) otda = ot.da.EMDTransport() # test its computed otda.fit(Xs=Xs, Xt=Xt) assert hasattr(otda, "cost_") assert hasattr(otda, "coupling_") # test dimensions of coupling assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) Xs_new, _ = make_data_classif('3gauss', ns + 1) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # test inverse transform transp_Xt = otda.inverse_transform(Xt=Xt) assert_equal(transp_Xt.shape, Xt.shape) Xt_new, _ = make_data_classif('3gauss2', nt + 1) transp_Xt_new = otda.inverse_transform(Xt=Xt_new) # check that the oos method is working assert_equal(transp_Xt_new.shape, Xt_new.shape) # test fit_transform transp_Xs = otda.fit_transform(Xs=Xs, Xt=Xt) assert_equal(transp_Xs.shape, Xs.shape) # test unsupervised vs semi-supervised mode otda_unsup = ot.da.EMDTransport() otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt) n_unsup = np.sum(otda_unsup.cost_) otda_semi = ot.da.EMDTransport() otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt) assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0]))) n_semisup = np.sum(otda_semi.cost_) # check that the cost matrix norms are indeed different assert n_unsup != n_semisup, "semisupervised mode not working" # check that the coupling forbids mass transport between labeled source # and labeled target samples mass_semi = np.sum( otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]) mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max] # we need to use a small tolerance here, otherwise the test breaks assert_allclose(mass_semi, np.zeros_like(mass_semi), rtol=1e-2, atol=1e-2)
def test_emd_laplace_class(): """test_emd_laplace_transport """ ns = 150 nt = 200 Xs, ys = make_data_classif('3gauss', ns) Xt, yt = make_data_classif('3gauss2', nt) otda = ot.da.EMDLaplaceTransport(reg_lap=0.01, max_iter=1000, tol=1e-9, verbose=False, log=True) # test its computed otda.fit(Xs=Xs, ys=ys, Xt=Xt) assert hasattr(otda, "coupling_") assert hasattr(otda, "log_") # test dimensions of coupling assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) # test all margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) [assert_equal(x.shape, y.shape) for x, y in zip(transp_Xs, Xs)] Xs_new, _ = make_data_classif('3gauss', ns + 1) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # test inverse transform transp_Xt = otda.inverse_transform(Xt=Xt) assert_equal(transp_Xt.shape, Xt.shape) Xt_new, _ = make_data_classif('3gauss2', nt + 1) transp_Xt_new = otda.inverse_transform(Xt=Xt_new) # check that the oos method is working assert_equal(transp_Xt_new.shape, Xt_new.shape) # test fit_transform transp_Xs = otda.fit_transform(Xs=Xs, Xt=Xt) assert_equal(transp_Xs.shape, Xs.shape) # check label propagation transp_yt = otda.transform_labels(ys) assert_equal(transp_yt.shape[0], yt.shape[0]) assert_equal(transp_yt.shape[1], len(np.unique(ys))) # check inverse label propagation transp_ys = otda.inverse_transform_labels(yt) assert_equal(transp_ys.shape[0], ys.shape[0]) assert_equal(transp_ys.shape[1], len(np.unique(yt)))
def test_sinkhorn_l1l2_transport_class(): """test_sinkhorn_transport """ ns = 150 nt = 200 Xs, ys = get_data_classif('3gauss', ns) Xt, yt = get_data_classif('3gauss2', nt) otda = ot.da.SinkhornL1l2Transport() # test its computed otda.fit(Xs=Xs, ys=ys, Xt=Xt) assert hasattr(otda, "cost_") assert hasattr(otda, "coupling_") assert hasattr(otda, "log_") # test dimensions of coupling assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) Xs_new, _ = get_data_classif('3gauss', ns + 1) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # test inverse transform transp_Xt = otda.inverse_transform(Xt=Xt) assert_equal(transp_Xt.shape, Xt.shape) Xt_new, _ = get_data_classif('3gauss2', nt + 1) transp_Xt_new = otda.inverse_transform(Xt=Xt_new) # check that the oos method is working assert_equal(transp_Xt_new.shape, Xt_new.shape) # test fit_transform transp_Xs = otda.fit_transform(Xs=Xs, ys=ys, Xt=Xt) assert_equal(transp_Xs.shape, Xs.shape) # test unsupervised vs semi-supervised mode otda_unsup = ot.da.SinkhornL1l2Transport() otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt) n_unsup = np.sum(otda_unsup.cost_) otda_semi = ot.da.SinkhornL1l2Transport() otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt) assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0]))) n_semisup = np.sum(otda_semi.cost_) # check that the cost matrix norms are indeed different assert n_unsup != n_semisup, "semisupervised mode not working" # check that the coupling forbids mass transport between labeled source # and labeled target samples mass_semi = np.sum( otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]) mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max] assert_allclose(mass_semi, np.zeros_like(mass_semi), rtol=1e-9, atol=1e-9) # check everything runs well with log=True otda = ot.da.SinkhornL1l2Transport(log=True) otda.fit(Xs=Xs, ys=ys, Xt=Xt) assert len(otda.log_.keys()) != 0
def test_mapping_transport_class(): """test_mapping_transport """ ns = 60 nt = 120 Xs, ys = get_data_classif('3gauss', ns) Xt, yt = get_data_classif('3gauss2', nt) Xs_new, _ = get_data_classif('3gauss', ns + 1) ########################################################################## # kernel == linear mapping tests ########################################################################## # check computation and dimensions if bias == False otda = ot.da.MappingTransport(kernel="linear", bias=False) otda.fit(Xs=Xs, Xt=Xt) assert hasattr(otda, "coupling_") assert hasattr(otda, "mapping_") assert hasattr(otda, "log_") assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[1], Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check computation and dimensions if bias == True otda = ot.da.MappingTransport(kernel="linear", bias=True) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) ########################################################################## # kernel == gaussian mapping tests ########################################################################## # check computation and dimensions if bias == False otda = ot.da.MappingTransport(kernel="gaussian", bias=False) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[0], Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check computation and dimensions if bias == True otda = ot.da.MappingTransport(kernel="gaussian", bias=True) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check everything runs well with log=True otda = ot.da.MappingTransport(kernel="gaussian", log=True) otda.fit(Xs=Xs, Xt=Xt) assert len(otda.log_.keys()) != 0
def compute_transport(Xs, Xt, ys=None, yt=None, manifold=None, M=None, reg_ot=1e-2, is_hyperbolic=True, normalization='max', wrapped_function=None, ot_solver='sinkhorn_knopp', limit_max=1e15, detach_x=False, detach_y=True, match_targets=False, verbose=False): ns, nt = len(Xs), len(Xt) a_np = unif(ns) b_np = unif(nt) if M is None: M_0 = compute_cost(Xs=Xs, Xt=Xt, ys=ys, yt=yt, manifold=manifold, is_hyperbolic=is_hyperbolic, normalization=normalization, wrapped_function=wrapped_function, match_targets=match_targets, detach_x=detach_x, detach_y=detach_y) M_np = M_0.data.numpy() else: M_0 = M.detach() M_0 = cost_normalization(M_0, normalization) M_np = M_0.data.numpy() if ((ys is not None) and (yt is not None)) and match_targets: ys_ = ys.data.numpy() yt_ = yt.data.numpy() classes = [c for c in np.unique(ys_) if c != -1] # assumes labeled source samples occupy the first rows # and labeled target samples occupy the first columns for c in classes: idx_s = np.where((ys_ != c) & (ys_ != -1)) idx_t = np.where(yt_ == c) # all the coefficients corresponding to a source sample # and a target sample : # with different labels get a infinite for j in idx_t[0]: M_np[idx_s[0], j] = limit_max if verbose: print("Computing initial coupling...") if reg_ot == 0: G_np = emd(a_np, b_np, M_np) else: if ot_solver == 'greenkhorn': G_np = greenkhorn(a_np, b_np, M_np, reg=reg_ot) elif ot_solver == 'sinkhorn': G_np = sinkhorn_stabilized(a_np, b_np, M_np, reg=reg_ot) elif ot_solver == 'sinkhorn_knopp': G_np = sinkhorn_knopp(a_np, b_np, M_np, reg=reg_ot) else: raise ValueError if verbose: print("Coupling done") a = torch.FloatTensor(a_np).detach_() b = torch.FloatTensor(b_np).detach_() G = torch.FloatTensor(G_np).detach_() M = torch.FloatTensor(M_np).detach_() return a, b, M, G