def __init__(self,
                 xs,
                 xt,
                 M,
                 manifold,
                 a=None,
                 b=None,
                 reg_fidelity=1.,
                 reg_ot=1e-3,
                 eps=1e-15,
                 ot_solver='sinkhorn'):

        super(LossModule, self).__init__()
        self.M = deepcopy(M).detach_()
        self.xs_ = xs
        self.xt_ = xt
        self.ns_ = len(xs)
        self.nt_ = len(xt)
        self.manifold = manifold
        self.reg_fidelity = reg_fidelity
        self.reg_ot = reg_ot
        self.eps = eps
        self.ot_solver = ot_solver
        self.a = torch.FloatTensor(unif(self.ns_)) if a is None else a
        self.b = torch.FloatTensor(unif(self.nt_)) if b is None else b
Пример #2
0
def test_mapping_transport_class(nx, kernel, bias):
    """test_mapping_transport
    """

    ns = 20
    nt = 30

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)
    Xs_new, _ = make_data_classif('3gauss', ns + 1)

    Xs, Xt, Xs_new = nx.from_numpy(Xs, Xt, Xs_new)

    # Mapping tests
    bias = bias == "biased"
    otda = ot.da.MappingTransport(kernel=kernel, bias=bias)
    otda.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "mapping_")
    assert hasattr(otda, "log_")

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    S = Xs.shape[0] if kernel == "gaussian" else Xs.shape[1]  # if linear
    if bias:
        S += 1
    assert_equal(otda.mapping_.shape, ((S, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        nx.to_numpy(nx.sum(otda.coupling_, axis=0)), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        nx.to_numpy(nx.sum(otda.coupling_, axis=1)), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check everything runs well with log=True
    otda = ot.da.MappingTransport(kernel=kernel, bias=bias, log=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Пример #3
0
def sinkhorn_cost(x,
                  y,
                  reg_ot=1.,
                  nx=None,
                  ny=None,
                  ys=None,
                  yt=None,
                  n_iter=100,
                  manifold=None,
                  normalization='max',
                  wrapped_function=None,
                  detach_x=False,
                  detach_y=True,
                  is_hyperbolic=False,
                  match_targets=False):

    nx = len(x) if nx is None else nx
    ny = len(y) if ny is None else ny

    a = torch.FloatTensor(unif(nx)).detach()
    b = torch.FloatTensor(unif(ny)).detach()

    M = compute_cost(x,
                     y,
                     manifold=manifold,
                     ys=ys,
                     yt=yt,
                     match_targets=match_targets,
                     normalization=normalization,
                     wrapped_function=wrapped_function,
                     detach_x=detach_x,
                     detach_y=detach_y,
                     is_hyperbolic=is_hyperbolic)
    return sinkhorn_loss(a,
                         b,
                         M,
                         epsilon=reg_ot,
                         n_iter=n_iter,
                         return_coupling=True)
Пример #4
0
def test_sinkhorn_l1l2_transport_class():
    """test_sinkhorn_transport
    """

    ns = 150
    nt = 200

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)

    otda = ot.da.SinkhornL1l2Transport()

    # test its computed
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)
    assert hasattr(otda, "cost_")
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "log_")

    # test dimensions of coupling
    assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    Xs_new, _ = make_data_classif('3gauss', ns + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # test inverse transform
    transp_Xt = otda.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    # check label propagation
    transp_yt = otda.transform_labels(ys)
    assert_equal(transp_yt.shape[0], yt.shape[0])
    assert_equal(transp_yt.shape[1], len(np.unique(ys)))

    # check inverse label propagation
    transp_ys = otda.inverse_transform_labels(yt)
    assert_equal(transp_ys.shape[0], ys.shape[0])
    assert_equal(transp_ys.shape[1], len(np.unique(yt)))

    Xt_new, _ = make_data_classif('3gauss2', nt + 1)
    transp_Xt_new = otda.inverse_transform(Xt=Xt_new)

    # check that the oos method is working
    assert_equal(transp_Xt_new.shape, Xt_new.shape)

    # test fit_transform
    transp_Xs = otda.fit_transform(Xs=Xs, ys=ys, Xt=Xt)
    assert_equal(transp_Xs.shape, Xs.shape)

    # test unsupervised vs semi-supervised mode
    otda_unsup = ot.da.SinkhornL1l2Transport()
    otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt)
    n_unsup = np.sum(otda_unsup.cost_)

    otda_semi = ot.da.SinkhornL1l2Transport()
    otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
    assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    n_semisup = np.sum(otda_semi.cost_)

    # check that the cost matrix norms are indeed different
    assert n_unsup != n_semisup, "semisupervised mode not working"

    # check that the coupling forbids mass transport between labeled source
    # and labeled target samples
    mass_semi = np.sum(
        otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max])
    mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]
    assert_allclose(mass_semi, np.zeros_like(mass_semi), rtol=1e-9, atol=1e-9)

    # check everything runs well with log=True
    otda = ot.da.SinkhornL1l2Transport(log=True)
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Пример #5
0
def test_jcpot_transport_class():
    """test_jcpot_transport
    """

    ns1 = 150
    ns2 = 150
    nt = 200

    Xs1, ys1 = make_data_classif('3gauss', ns1)
    Xs2, ys2 = make_data_classif('3gauss', ns2)

    Xt, yt = make_data_classif('3gauss2', nt)

    Xs = [Xs1, Xs2]
    ys = [ys1, ys2]

    otda = ot.da.JCPOTTransport(reg_e=1,
                                max_iter=10000,
                                tol=1e-9,
                                verbose=True,
                                log=True)

    # test its computed
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)

    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "proportions_")
    assert hasattr(otda, "log_")

    # test dimensions of coupling
    for i, xs in enumerate(Xs):
        assert_equal(otda.coupling_[i].shape, ((xs.shape[0], Xt.shape[0])))

    # test all margin constraints
    mu_t = unif(nt)

    for i in range(len(Xs)):
        # test margin constraints w.r.t. uniform target weights for each coupling matrix
        assert_allclose(np.sum(otda.coupling_[i], axis=0),
                        mu_t,
                        rtol=1e-3,
                        atol=1e-3)

        # test margin constraints w.r.t. modified source weights for each source domain

        assert_allclose(np.dot(otda.log_['D1'][i],
                               np.sum(otda.coupling_[i], axis=1)),
                        otda.proportions_,
                        rtol=1e-3,
                        atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    [assert_equal(x.shape, y.shape) for x, y in zip(transp_Xs, Xs)]

    Xs_new, _ = make_data_classif('3gauss', ns1 + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check label propagation
    transp_yt = otda.transform_labels(ys)
    assert_equal(transp_yt.shape[0], yt.shape[0])
    assert_equal(transp_yt.shape[1], len(np.unique(ys)))

    # check inverse label propagation
    transp_ys = otda.inverse_transform_labels(yt)
    [assert_equal(x.shape[0], y.shape[0]) for x, y in zip(transp_ys, ys)]
    [
        assert_equal(x.shape[1], len(np.unique(y)))
        for x, y in zip(transp_ys, ys)
    ]
Пример #6
0
def test_mapping_transport_class():
    """test_mapping_transport
    """

    ns = 60
    nt = 120

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)
    Xs_new, _ = make_data_classif('3gauss', ns + 1)

    ##########################################################################
    # kernel == linear mapping tests
    ##########################################################################

    # check computation and dimensions if bias == False
    otda = ot.da.MappingTransport(kernel="linear", bias=False)
    otda.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "mapping_")
    assert hasattr(otda, "log_")

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[1], Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check computation and dimensions if bias == True
    otda = ot.da.MappingTransport(kernel="linear", bias=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    ##########################################################################
    # kernel == gaussian mapping tests
    ##########################################################################

    # check computation and dimensions if bias == False
    otda = ot.da.MappingTransport(kernel="gaussian", bias=False)
    otda.fit(Xs=Xs, Xt=Xt)

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[0], Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check computation and dimensions if bias == True
    otda = ot.da.MappingTransport(kernel="gaussian", bias=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check everything runs well with log=True
    otda = ot.da.MappingTransport(kernel="gaussian", log=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Пример #7
0
def test_emd_transport_class():
    """test_sinkhorn_transport
    """

    ns = 150
    nt = 200

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)

    otda = ot.da.EMDTransport()

    # test its computed
    otda.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otda, "cost_")
    assert hasattr(otda, "coupling_")

    # test dimensions of coupling
    assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    Xs_new, _ = make_data_classif('3gauss', ns + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # test inverse transform
    transp_Xt = otda.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    Xt_new, _ = make_data_classif('3gauss2', nt + 1)
    transp_Xt_new = otda.inverse_transform(Xt=Xt_new)

    # check that the oos method is working
    assert_equal(transp_Xt_new.shape, Xt_new.shape)

    # test fit_transform
    transp_Xs = otda.fit_transform(Xs=Xs, Xt=Xt)
    assert_equal(transp_Xs.shape, Xs.shape)

    # test unsupervised vs semi-supervised mode
    otda_unsup = ot.da.EMDTransport()
    otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt)
    n_unsup = np.sum(otda_unsup.cost_)

    otda_semi = ot.da.EMDTransport()
    otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
    assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    n_semisup = np.sum(otda_semi.cost_)

    # check that the cost matrix norms are indeed different
    assert n_unsup != n_semisup, "semisupervised mode not working"

    # check that the coupling forbids mass transport between labeled source
    # and labeled target samples
    mass_semi = np.sum(
        otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max])
    mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]

    # we need to use a small tolerance here, otherwise the test breaks
    assert_allclose(mass_semi, np.zeros_like(mass_semi),
                    rtol=1e-2, atol=1e-2)
Пример #8
0
def test_emd_laplace_class():
    """test_emd_laplace_transport
    """
    ns = 150
    nt = 200

    Xs, ys = make_data_classif('3gauss', ns)
    Xt, yt = make_data_classif('3gauss2', nt)

    otda = ot.da.EMDLaplaceTransport(reg_lap=0.01,
                                     max_iter=1000,
                                     tol=1e-9,
                                     verbose=False,
                                     log=True)

    # test its computed
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)

    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "log_")

    # test dimensions of coupling
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test all margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)

    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    [assert_equal(x.shape, y.shape) for x, y in zip(transp_Xs, Xs)]

    Xs_new, _ = make_data_classif('3gauss', ns + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # test inverse transform
    transp_Xt = otda.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    Xt_new, _ = make_data_classif('3gauss2', nt + 1)
    transp_Xt_new = otda.inverse_transform(Xt=Xt_new)

    # check that the oos method is working
    assert_equal(transp_Xt_new.shape, Xt_new.shape)

    # test fit_transform
    transp_Xs = otda.fit_transform(Xs=Xs, Xt=Xt)
    assert_equal(transp_Xs.shape, Xs.shape)

    # check label propagation
    transp_yt = otda.transform_labels(ys)
    assert_equal(transp_yt.shape[0], yt.shape[0])
    assert_equal(transp_yt.shape[1], len(np.unique(ys)))

    # check inverse label propagation
    transp_ys = otda.inverse_transform_labels(yt)
    assert_equal(transp_ys.shape[0], ys.shape[0])
    assert_equal(transp_ys.shape[1], len(np.unique(yt)))
Пример #9
0
def test_sinkhorn_l1l2_transport_class():
    """test_sinkhorn_transport
    """

    ns = 150
    nt = 200

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)

    otda = ot.da.SinkhornL1l2Transport()

    # test its computed
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)
    assert hasattr(otda, "cost_")
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "log_")

    # test dimensions of coupling
    assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    Xs_new, _ = get_data_classif('3gauss', ns + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # test inverse transform
    transp_Xt = otda.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    Xt_new, _ = get_data_classif('3gauss2', nt + 1)
    transp_Xt_new = otda.inverse_transform(Xt=Xt_new)

    # check that the oos method is working
    assert_equal(transp_Xt_new.shape, Xt_new.shape)

    # test fit_transform
    transp_Xs = otda.fit_transform(Xs=Xs, ys=ys, Xt=Xt)
    assert_equal(transp_Xs.shape, Xs.shape)

    # test unsupervised vs semi-supervised mode
    otda_unsup = ot.da.SinkhornL1l2Transport()
    otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt)
    n_unsup = np.sum(otda_unsup.cost_)

    otda_semi = ot.da.SinkhornL1l2Transport()
    otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
    assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    n_semisup = np.sum(otda_semi.cost_)

    # check that the cost matrix norms are indeed different
    assert n_unsup != n_semisup, "semisupervised mode not working"

    # check that the coupling forbids mass transport between labeled source
    # and labeled target samples
    mass_semi = np.sum(
        otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max])
    mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]
    assert_allclose(mass_semi, np.zeros_like(mass_semi),
                    rtol=1e-9, atol=1e-9)

    # check everything runs well with log=True
    otda = ot.da.SinkhornL1l2Transport(log=True)
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Пример #10
0
def test_mapping_transport_class():
    """test_mapping_transport
    """

    ns = 60
    nt = 120

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)
    Xs_new, _ = get_data_classif('3gauss', ns + 1)

    ##########################################################################
    # kernel == linear mapping tests
    ##########################################################################

    # check computation and dimensions if bias == False
    otda = ot.da.MappingTransport(kernel="linear", bias=False)
    otda.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "mapping_")
    assert hasattr(otda, "log_")

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[1], Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check computation and dimensions if bias == True
    otda = ot.da.MappingTransport(kernel="linear", bias=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    ##########################################################################
    # kernel == gaussian mapping tests
    ##########################################################################

    # check computation and dimensions if bias == False
    otda = ot.da.MappingTransport(kernel="gaussian", bias=False)
    otda.fit(Xs=Xs, Xt=Xt)

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[0], Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check computation and dimensions if bias == True
    otda = ot.da.MappingTransport(kernel="gaussian", bias=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check everything runs well with log=True
    otda = ot.da.MappingTransport(kernel="gaussian", log=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Пример #11
0
def compute_transport(Xs,
                      Xt,
                      ys=None,
                      yt=None,
                      manifold=None,
                      M=None,
                      reg_ot=1e-2,
                      is_hyperbolic=True,
                      normalization='max',
                      wrapped_function=None,
                      ot_solver='sinkhorn_knopp',
                      limit_max=1e15,
                      detach_x=False,
                      detach_y=True,
                      match_targets=False,
                      verbose=False):
    ns, nt = len(Xs), len(Xt)
    a_np = unif(ns)
    b_np = unif(nt)

    if M is None:
        M_0 = compute_cost(Xs=Xs,
                           Xt=Xt,
                           ys=ys,
                           yt=yt,
                           manifold=manifold,
                           is_hyperbolic=is_hyperbolic,
                           normalization=normalization,
                           wrapped_function=wrapped_function,
                           match_targets=match_targets,
                           detach_x=detach_x,
                           detach_y=detach_y)
        M_np = M_0.data.numpy()
    else:
        M_0 = M.detach()
        M_0 = cost_normalization(M_0, normalization)
        M_np = M_0.data.numpy()

        if ((ys is not None) and (yt is not None)) and match_targets:
            ys_ = ys.data.numpy()
            yt_ = yt.data.numpy()
            classes = [c for c in np.unique(ys_) if c != -1]
            # assumes labeled source samples occupy the first rows
            # and labeled target samples occupy the first columns
            for c in classes:
                idx_s = np.where((ys_ != c) & (ys_ != -1))
                idx_t = np.where(yt_ == c)
                # all the coefficients corresponding to a source sample
                # and a target sample :
                # with different labels get a infinite
                for j in idx_t[0]:
                    M_np[idx_s[0], j] = limit_max

    if verbose:
        print("Computing initial coupling...")

    if reg_ot == 0:
        G_np = emd(a_np, b_np, M_np)
    else:
        if ot_solver == 'greenkhorn':
            G_np = greenkhorn(a_np, b_np, M_np, reg=reg_ot)
        elif ot_solver == 'sinkhorn':
            G_np = sinkhorn_stabilized(a_np, b_np, M_np, reg=reg_ot)
        elif ot_solver == 'sinkhorn_knopp':
            G_np = sinkhorn_knopp(a_np, b_np, M_np, reg=reg_ot)
        else:
            raise ValueError
    if verbose:
        print("Coupling done")

    a = torch.FloatTensor(a_np).detach_()
    b = torch.FloatTensor(b_np).detach_()
    G = torch.FloatTensor(G_np).detach_()
    M = torch.FloatTensor(M_np).detach_()
    return a, b, M, G