Пример #1
0
def plotLabelledSet():
    # Creating a web report
    report = otter.Otter("otterHtmls/training_set_noDS.html",
                         author="Gonghan Xu",
                         title="Training Set")
    dat = np.load("heavyTrainSet_noDS.npy")
    dat = sorted(dat)
    # dat = dat[: 10]
    startLoadTime = time.time()
    numIns = len(dat)

    with report:
        # Putting the plots onto the web page.
        for idx, ins in enumerate(dat, start=1):
            if idx % 20 == 0:
                print "Generating {}st/{} image".format(idx, numIns)
            fig, ax = ins.getPlot()

            # Writing the downsampled time_freq image
            # Creating a row with three columns.
            row = bt.Row(3)
            row[0] + idx
            # Putting the figure to the middle cell.
            row[1].width = 6
            row[1] + fig
            report + row
            if ins.hasDoubleChirp:
                row[2] + "Double Chirp"
            else:
                row[2] + "Not Double Chirp"
            plt.close(fig)

    endLoadTime = time.time()
    loadTime = endLoadTime - startLoadTime
    print "Web page generation time:", loadTime, "sec"
Пример #2
0
def plotArbiAngles():
    # Creating a web report
    report = otter.Otter("otterHtmls/GT0448_100SampleTfMaps.html",
                         author="Gonghan Xu",
                         title="100 Time-frequency maps without labels")
    with report:
        # Putting the plots onto the web page.
        for waveName in waveList:
            plotNum = 0
            wavePath = PATH.join(WAVEFORM_DIR, waveName + ".h5")
            for iota in np.linspace(0, pi, 10, endpoint=True):
                for phi in np.linspace(0, 2 * pi, 10, endpoint=True):
                    iotaStr = utils.ang_to_str(iota)
                    phiStr = utils.ang_to_str(phi)
                    # Constructing a data row
                    # Writing the data parameters
                    plotNum += 1
                    # Generate the downsampled time-freq map
                    # used for training
                    wf_data = gen_waveform(wavePath, iota, phi)
                    tf_data = tf_decompose(wf_data['hp'],
                                           wf_data["sample_times"], motherFreq,
                                           maxScale)
                    wplane = tf_data["wplane"]
                    wfreqs = tf_data["wfreqs"]
                    sample_times = wf_data["sample_times"]
                    # Get the selected region.
                    wplane_sel, freqs_sel, times_sel = \
                     utils.select_wplane(wplane, wfreqs,
                          sample_times,
                          mid_t=0, xnum=500,
                          ynum=350,
                          left_t_window=-0.05,
                          right_t_window=0.03,
                          freq_window=500)
                    print "{}. {}, iota: {}, phi: {}".\
                     format(plotNum, waveName, iotaStr, phiStr)

                    fig, ax = plt.subplots(figsize=fig_size)
                    ax.pcolormesh(times_sel,
                                  freqs_sel,
                                  wplane_sel,
                                  cmap="gray")
                    ax.set_xlabel("time (s)")
                    ax.set_ylabel("frequency (Hz)")
                    ax.set_title("{}. {}, iota: {}, phi: {}, "
                                 "mother freq: {:.2f}".format(
                                     plotNum, waveName, iotaStr, phiStr,
                                     motherFreq))
                    # plt.show()
                    # Writing the downsampled time_freq image
                    # Creating a row with three columns.
                    row = bt.Row(3)
                    # Putting the figure to the middle cell.
                    row[1].width = 6
                    row[1] + fig
                    report + row
Пример #3
0
def plotInstances(dataSetName):
    instances = np.load(dataSetName)
    instances.sort()
    report = otter.Otter("otterHtmls/GT0453_100SampleInstances.html",
                         author="Gonghan Xu",
                         title="100 time-frequency maps for "
                         "{} with manual label".format(
                             instances[0].waveformName))
    # i = 0
    with report:
        plotNum = 0
        for instance in instances:
            # i += 1
            # if i == 5:
            # 	break
            # Loading parameters.
            plotNum += 1
            waveName = instance.waveformName
            wavePath = PATH.join(WAVEFORM_DIR, waveName + ".h5")
            iota = instance.iota
            phi = instance.phi
            hasDoubleChirp = instance.hasDoubleChirp
            motherFreq = instance.motherFreq
            iotaStr = utils.ang_to_str(iota)
            phiStr = utils.ang_to_str(phi)
            # Generate the down-sampled time-freq map
            # used for training with embedded data parameters.
            wf_data = gen_waveform(wavePath, iota, phi)
            tf_data = tf_decompose(wf_data['hp'], wf_data["sample_times"],
                                   motherFreq, maxScale)
            wplane = tf_data["wplane"]
            wfreqs = tf_data["wfreqs"]
            sample_times = wf_data["sample_times"]
            # Get the selected region.
            wplane_sel, freqs_sel, times_sel = \
             utils.select_wplane(wplane, wfreqs,
                  sample_times,
                  mid_t=0, xnum=500,
                  ynum=350,
                  left_t_window=-0.05,
                  right_t_window=0.03,
                  freq_window=500)
            print "{}. {}, iota: {}, phi: {}, motherFreq: {:.2f}".\
             format(plotNum, waveName, iotaStr, phiStr, motherFreq)

            fig, ax = plt.subplots(figsize=fig_size)
            ax.pcolormesh(times_sel, freqs_sel, wplane_sel, cmap="gray")
            ax.set_xlabel("time (s)")
            ax.set_ylabel("frequency (Hz)")
            ax.set_title("{}. {}, iota: {}, phi: {}, "
                         "mother freq: {:.2f}".format(plotNum, waveName,
                                                      iotaStr, phiStr,
                                                      motherFreq))
            # plt.show()
            # Writing the down-sampled time_freq image.
            # Creating a row with three columns.
            row = bt.Row(3)
            # Putting the figure to the middle cell.
            row[1].width = 6
            row[1] + fig
            report + row
            row = bt.Row(3)
            row[1] + "({}) Double Chirp: {}".format(plotNum, hasDoubleChirp)
            report + row
Пример #4
0
def plotProbs():
    # Creating a web report
    report = otter.Otter("otterHtmls/probs.html",
                         author="Gonghan Xu",
                         title="All Cases (Linear Kernel; "
                         "Using Original Image Size: 508 * 328)")

    dat = np.load("heavyTrainSet_noDS.npy")
    # dat = sorted(dat)
    # dat = dat[: 248]
    startLoadTime = time.time()
    numIns = len(dat)
    shuffIndices, probs, accus, fails, confMat \
     = getCrossValProbs(dat, nfolds=5)

    # sys.exit()
    print "Start generating plots.."
    numAccurates = 0
    counter = 0
    with report:
        # Putting the plots onto the web page.
        for c, i in enumerate(range(numIns), start=1):
            if c % 50 == 0:
                print "At {}st/{} image".format(c, numIns)
            # if not fails[i]:
            # 	continue
            counter += 1
            ins = dat[shuffIndices[i]]
            fig, ax = ins.getPlot()

            # Writing the downsampled time_freq image
            # Creating a row with three columns.
            row = bt.Row(4)
            row[0] + counter
            # Putting the figure to the middle cell.
            row[1].width = 6
            row[1] + fig
            if ins.hasDoubleChirp:
                row[2] + "Hand Label: Double Chirp"
            else:
                row[2] + "Hand Label: Not Double Chirp"
            row[3] + "Predicted Prob (Double Chirp): {:.3f}"\
             .format(probs[i])
            report + row
            plt.close(fig)

            # if ins.hasDoubleChirp:
            # 	numAccurates += 1 if probs[i] > 0.5 else 0
            # else:
            # 	numAccurates += 1 if probs[i] <= 0.5 else 0

            # if dat[shuffIndices[i]].hasDoubleChirp:
            # 	numAccurates += 1 if probs[shuffIndices[i]] > 0.5 else 0
            # else:
            # 	numAccurates += 1 if probs[shuffIndices[i]] <= 0.5 else 0

    endLoadTime = time.time()
    loadTime = endLoadTime - startLoadTime
    print "Web page generation time:", loadTime, "sec"
    print "Verifying classification accuracy: {:.5f}"\
     .format(1 - 1.0 * sum(fails) / numIns)
Пример #5
0
    return cluster, status, job


uber_repository = git.MetaRepository(
    "/home/daniel.williams/events/O3/o3a_catalog_events")

events = gitlab.find_events(repository, milestone="PE: C01 Reruns")

mattermost = mattermost.Mattermost()

mattermost.send_message(":mega: The run supervising robot is running. :robot:",
                        "@daniel-williams")

report = otter.Otter(
    filename=
    "/home/daniel.williams/public_html/LVC/projects/O3/C01/summary.html",
    author="R. Daniel Williams",
    title="Asimov/Olivaw : Event supervision report")

with report:
    report + "This report contains the latest updates on the run status of the various PE runs ongoing at CIT."
    report + "Supervisor last checked these events at " + str(
        datetime.datetime.now())

message = """# Run updates\n"""
message += """| Event | Gitlab State | Run state | Production | Approx | Sampler | Status |\n"""
message += """|---|---|---|---|---|---|\n"""

for event in events:
    print(event.title)
    status = None
Пример #6
0
def main(eventflag):

    report = otter.Otter(
        filename=
        "/home/daniel.williams/public_html/LVC/projects/O3/C01/audit_current.html",
        author="R. Daniel Williams",
        title="Asimov/Olivaw : Preferred run audit report")

    with report:
        report + "This report contains the latest updates on the run status of the various PE runs ongoing at CIT."
        report + "Supervisor last checked these events at " + str(
            datetime.datetime.now())

    global events

    if eventflag:
        events = [event for event in events if event.title == eventflag]

    for event in events:
        print(event.title)

        # if event.state == None:
        #     continue
        # if "Special" in event.labels:
        #    continue
        # if "Preferred cleaned" in event.labels:
        #    continue

        try:
            repo = uber_repository.get_repo(event.title)
        except:
            print(f"{event.title} missing from the uberrepo")
            continue

        repo.update(stash=True)

        with report:
            report + f"#{event.title}"

        preferred_summary = os.path.join(repo.directory, "Preferred",
                                         "PESummary_metafile",
                                         "posterior_samples.h5")

        try:
            print(preferred_summary)
            data = read(preferred_summary)

            print(data.labels)

            with report:
                report + f"{data.labels}"
        except OSError:
            with report:
                report + f"There is no preferred file in this repository."

        try:
            event_prods = repo.find_prods(config.get("olivaw", "run_category"))
        except:
            print(f"No runs in this repository")
            continue

        if event.state in ["Generating PSDs", "Productions running", "Stuck"]:
            psds_dict = {}
            prod_keys = [
                key for key in event.data.keys() if "Prod" in key[0:5]
            ]
            n_productions = len(event_prods)
            event_psds_l = []

            pref_prod = []
            for prod in event_prods:
                prod = prod.split("_")[0]
                if prod in event.data:
                    cluster = event.data[prod]

                    run_ini = os.path.join(event.data[f"{prod}_rundir"],
                                           "config.ini")
                    actual_config = RunConfiguration(run_ini)
                    engine_data = actual_config.get_engine()

                    if "finalised" in cluster.lower():
                        print(f"{prod} is the preferred production")
                        pref_prod.append(prod)
            try:
                if len(pref_prod) == 0: continue
                upload_results(repo, event, pref_prod, report=report)
            except FileNotFoundError as e:
                print(e)
Пример #7
0
def main():

    report = otter.Otter(
        filename=
        "/home/daniel.williams/public_html/LVC/projects/O3/C01/audit_mcmc.html",
        author="R. Daniel Williams",
        title="Asimov/Olivaw : Preferred run audit report")

    with report:
        report + "This report contains the latest updates on the run status of the various PE runs ongoing at CIT."
        report + "Supervisor last checked these events at " + str(
            datetime.datetime.now())

    all_ids, all_wds = get_all_jobs()

    for event in events:
        print(event.title)

        if event.state == None:
            continue
        if "Special" in event.labels:
            continue
        try:
            repo = uber_repository.get_repo(event.title)
        except:
            print(f"{event.title} missing from the uberrepo")
            continue

        repo.update(stash=True)

        with report:
            report + f"#{event.title}"

        try:
            event_prods = repo.find_prods(config.get("olivaw", "run_category"))
        except:
            print(f"No runs in this repository")
            continue

        if event.state in ["Generating PSDs", "Productions running", "Stuck"]:
            psds_dict = {}
            prod_keys = [
                key for key in event.data.keys() if "Prod" in key[0:5]
            ]
            n_productions = len(event_prods)
            event_psds_l = []

            pref_prod = []
            for prod in event_prods:
                prod = prod.split("_")[0]
                if prod in event.data:
                    if "blocked" in event.data[prod].lower(): continue
                    cluster = event.data[prod]
                    prod_rundir = event.data[f"{prod}_rundir"]
                    run_ini = os.path.join(prod_rundir, "config.ini")
                    actual_config = RunConfiguration(run_ini)
                    try:
                        engine_data = actual_config.get_engine()
                    except:
                        continue

                    if not "daniel.williams" in prod_rundir:
                        continue

                    if actual_config.ini.get("analysis",
                                             "engine") == "lalinferencemcmc":
                        # Keep only lists that correspond to the working directory
                        job_ids = [
                            number
                            for number, directory in zip(all_ids, all_wds)
                            if (prod in directory) and (
                                event.title in directory)
                        ]
                        print(job_ids)
                        if len(job_ids) > 0:
                            report += job_ids
                        tmp = "tmp"
                        try:
                            os.makedirs(tmp)
                        except:
                            pass

                        try:
                            os.makedirs(f"{prod_rundir}/{tmp}/html")
                            #os.popen(f"rm -r /home/john.veitch/projects/O3/SEOBNRv4P_rota_runs/{event.title}/{prod}")
                            os.makedirs(
                                f"/home/john.veitch/projects/O3/SEOBNRv4P_rota_runs/{event.title}/{prod}-robot"
                            )
                        except:
                            pass

                        raw_pp_str = os.popen(
                            f'grep cbcBayesPostProc {prod_rundir}/lalinference*.sh'
                        ).read()
                        pspath0 = raw_pp_str.split('hdf5_snr.txt ')[-1].split(
                            ' ')[0]
                        for job in job_ids:
                            os.system(
                                f'condor_ssh_to_job -ssh scp {job} remote:./*.hdf* {prod_rundir}/{tmp}'
                            )

                        for h5file in glob.glob(f"{prod_rundir}/{tmp}/*.hdf5"):
                            pspath1 = h5file  # os.path.join(prod_rundir, tmp,'*.hdf5')
                            # print(pspath1)
                            file = h5file.split("/")[-1]
                            copy(
                                h5file,
                                f"/home/john.veitch/projects/O3/SEOBNRv4P_rota_runs/{event.title}/{prod}-robot/{file}"
                            )
                            pspath = raw_pp_str.replace(pspath0, pspath1)
                            webpath = pspath.split("--outpath")[1].split()[0]

                            new_webpath = f"{prod_rundir}/{tmp}/html"
                            print(pspath.replace(webpath, new_webpath))
Пример #8
0
def html(event, webdir):
    """
    Return the ledger for a given event.
    If no event is specified then the entire production ledger is returned.
    """
    server, repository = connect_gitlab()
    if not webdir:
        webdir = config.get("report", "report_root")
    click.echo("Getting events...")
    events = gitlab.find_events(repository,
                                milestone=config.get("olivaw", "milestone"),
                                subset=[event],
                                repo=False,
                                update=False)
    click.echo("Got events")
    if len(glob.glob("asimov.conf")) > 0:
        config_file = "asimov.conf"
    else:
        config_file = None

    report = otter.Otter(f"{webdir}/index.html",
                         author="Olivaw",
                         title="Olivaw PE Report",
                         author_email=config.get("report", "report_email"),
                         config_file=config_file)

    with report:
        navbar = bt.Navbar("Asimov", background="navbar-dark bg-primary")
        report + navbar

    with report:
        time = bt.Container()

        time + f"Report generated at {str(datetime.now(tz))}"
        report + time

    cards = []
    container = bt.Container()
    container + "# All PE Productions"
    for event in events:
        click.secho(event.title, bold=True)

        event_report = otter.Otter(f"{webdir}/{event.title}.html",
                                   author="Olivaw",
                                   title=f"Olivaw PE Report | {event.title}",
                                   author_email="*****@*****.**",
                                   config_file=config_file)

        with event_report:
            navbar = bt.Navbar("Asimov", background="navbar-dark bg-primary")
            event_report + navbar

        card = bt.Card(title=f"<a href='{event.title}.html'>{event.title}</a>")

        toc = bt.Container()

        for production in event.productions:
            toc + f"* [{production.name}](#{production.name}) | {production.pipeline} |"  # + bt.Badge({production.pipeline}, "info")

        with event_report:
            title_c = bt.Container()
            title_c + f"#{event.title}"
            event_report + title_c
            event_report + toc

        production_list = bt.ListGroup()
        for production in event.productions:
            click.echo(f"{event.title}\t{production.name}")
            if production.pipeline.lower() in known_pipelines:
                pipe = known_pipelines[production.pipeline.lower()](
                    production, "C01_offline")

            event_log = otter.Otter(
                f"{webdir}/{event.title}-{production.name}.html",
                author="Olivaw",
                title=f"Olivaw PE Report | {event.title} | {production.name}",
                author_email="*****@*****.**",
                config_file=config_file)

            status_map = {
                "cancelled": "light",
                "finished": "success",
                "uploaded": "success",
                "processing": "primary",
                "running": "primary",
                "stuck": "warning",
                "restart": "secondary",
                "ready": "secondary",
                "wait": "light",
                "stop": "danger",
                "manual": "light",
                "stopped": "light"
            }
            with event_report:
                container = bt.Container()
                container + f"## {production.name}"
                container + f"<a id='{production.name}'/>"
                container + "### Ledger"
                container + production.meta

            if production.pipeline.lower() == "bilby":
                container + f"### Progress"
                progress_line = []
                procs = pipe.check_progress()
                for proc, val in procs.items():
                    container + f"- {proc.split('_')[-1]}\t{val[0]}\t{val[1]}"
                    progress_line.append(f"{val[1]}")
            else:
                progress_line = []
            if production.status.lower() == "running":
                progress = str(bt.Badge("|".join(progress_line)))
            else:
                progress = ""

            if production.status.lower() == "uploaded":
                link = os.path.join(
                    "https://ldas-jobs.ligo.caltech.edu",
                    config.get('general',
                               'webroot').replace("/home/", "~").replace(
                                   "public_html/", ""), production.event.name,
                    production.name, "results", "home.html")
                item_text = f"<a href='{link}'>{production.name}</a>"
            else:
                item_text = f"<a href='{event.title}.html#{production.name}'>{production.name}</a>"
            production_list.add_item(
                item_text + str(bt.Badge(f"{production.pipeline}", "info")) +
                progress + str(bt.Badge(f"{production.status}")),
                context=status_map[production.status])

            # logs = pipe.collect_logs()
            # container + f"### Log files"
            # container + f"<a href='{event.title}-{production.name}.html'>Log file page</a>"
            # with event_log:

            #     for log, message in logs.items():
            #         log_card = bt.Card(title=f"{log}")
            #         log_card.add_content("<div class='card-body'><pre>"+message+"</pre></div>")
            #         event_log + log_card

            with event_report:
                event_report + container

        card.add_content(production_list)
        cards.append(card)

    with report:
        if len(cards) == 1:
            report + card
        else:
            for i, card in enumerate(cards):
                if i % 2 == 0:
                    deck = bt.CardDeck()
                deck + card
                if i % 2 == 1:
                    report + deck