def test_3(self): matrix = np.array([[4, 0, 6, 2, 2, 1], [3, 8, 4, 10, 4, 4], [1, 2, 6, 5, 0, 0], [6, 6, 4, 4, 10, 3], [10, 4, 6, 4, 0, 9], [10, 7, 0, 7, 9, 8]]) func_p, func_q, func_cost = nash_equilibrium1(matrix) p, q, cost = nash.nash_equilibrium(matrix) assert_equals(abs(func_cost - cost) < 0.00001, True) assert_equals(sum(abs(x - y) < 0.00001 for x, y in zip(func_p, p)), len(func_p)) assert_equals(sum(abs(x - y) < 0.00001 for x, y in zip(func_q, q)), len(func_q))
def test_6(self): matrix = np.array([ [8, 4, 7], [6, 5, 9], [7, 6, 8], ]) func_p, func_q, func_cost = nash_equilibrium1(matrix) p, q, cost = nash.nash_equilibrium(matrix) assert_equals(abs(func_cost - cost) < 0.00001, True) assert_equals(sum(abs(x - y) < 0.00001 for x, y in zip(func_p, p)), len(func_p)) assert_equals(sum(abs(x - y) < 0.00001 for x, y in zip(func_q, q)), len(func_q))
def test_2(self): matrix = np.array([ [0, 0, 0], [1, 3, 5], [2, 4, 6], ]) func_p, func_q, func_cost = nash_equilibrium1(matrix) p, q, cost = nash.nash_equilibrium(matrix) assert_equals(abs(func_cost - cost) < 0.00001, True) assert_equals(sum(abs(x - y) < 0.00001 for x, y in zip(func_p, p)), len(func_p)) assert_equals(sum(abs(x - y) < 0.00001 for x, y in zip(func_q, q)), len(func_q))