def test_outlierfunction(): # Test outlierfunction # Test data x = np.random.normal(size=(1000)) expected = np.where(x>2)[0] actual = np.ravel(outlier(x, 2)) # Did you forget to return the value? if actual is None: raise RuntimeError("function returned None") assert_allclose(expected, actual)
def test_outlierfunction(): # Test outlierfunction # Test data x = np.random.normal(size=(1000)) expected = np.where(x > 2)[0] actual = np.ravel(outlier(x, 2)) # Did you forget to return the value? if actual is None: raise RuntimeError("function returned None") assert_allclose(expected, actual)
import numpy as np from outlierfunction import outlier for i in range(1,10): for j in range(1,4): # set general path for reaching dvars and fd files # also path for saving files txtpath='ds005/sub00'+`i`+'/BOLD/task001_run00'+`j`+'/QA/' # dvars path and name, call function to get outliers dvarsfile=txtpath+'dvars.txt' dvarssave=txtpath+'dvars_outlier_sub'+`i`+'run'+`j`+'.txt' # common boundary for dvars is 0.3 - 0.5 # paper used 0.5 dvars_outlier = outlier(dvarsfile,dvarssave, 0.5) # fd path and name, call function to get outliers fdfile=txtpath+'fd.txt' fdsave=txtpath+'fd_outlier_sub'+`i`+'run'+`j`+'.txt' # common boundary for fd is 0.2 - 0.5 # paper used 0.5 fd_outlier = outlier(fdfile, fdsave, 0.5) for i in range(10,17): for j in range(1,4): # set general path for reaching dvars and fd files # also path for saving files txtpath='ds005/sub0'+`i`+'/BOLD/task001_run00'+`j`+'/QA/' # dvars path and name, call function to get outliers dvarsfile=txtpath+'dvars.txt' dvarssave=txtpath+'dvars_outlier_sub'+`i`+'run'+`j`+'.txt' # common boundary for dvars is 0.3 - 0.5 # paper used 0.5
#This script calculates the outliers for subjects runs based on fd and dvars dvars_out = {} fd_out = {} for i in range(1,10): for j in range(1,4): # set general path for reaching dvars and fd files # also path for saving files txtpath='../../data/ds005/sub00'+`i`+'/BOLD/task001_run00'+`j`+'/QA/' # dvars path and name, call function to get outliers dvarsfile=txtpath+'dvars.txt' dvars_data = np.loadtxt(dvarsfile) # common boundary for dvars is 0.3 - 0.5 # paper used 0.5 dvars_outlier = outlier(dvars_data, 0.5) dvars_out['sub'+`i`+'run'+`j`] = dvars_outlier[0].tolist() # fd path and name, call function to get outliers fdfile=txtpath+'fd.txt' fd_data = np.loadtxt(fdfile) # common boundary for fd is 0.2 - 0.5 # paper used 0.5 fd_outlier = outlier(fd_data, 0.5) fd_out['sub'+`i`+'run'+`j`] = fd_outlier[0].tolist() for i in range(10,17): for j in range(1,4): # set general path for reaching dvars and fd files # also path for saving files txtpath='../../data/ds005/sub0'+`i`+'/BOLD/task001_run00'+`j`+'/QA/' # dvars path and name, call function to get outliers
from outlierfunction import outlier dvars_out = {} fd_out = {} for i in range(1, 10): for j in range(1, 4): # set general path for reaching dvars and fd files # also path for saving files txtpath = '../../data/ds005/sub00' + ` i ` + '/BOLD/task001_run00' + ` j ` + '/QA/' # dvars path and name, call function to get outliers dvarsfile = txtpath + 'dvars.txt' dvars_data = np.loadtxt(dvarsfile) # common boundary for dvars is 0.3 - 0.5 # paper used 0.5 dvars_outlier = outlier(dvars_data, 0.5) dvars_out['sub' + ` i ` + 'run' + ` j `] = dvars_outlier[0].tolist() # fd path and name, call function to get outliers fdfile = txtpath + 'fd.txt' fd_data = np.loadtxt(fdfile) # common boundary for fd is 0.2 - 0.5 # paper used 0.5 fd_outlier = outlier(fd_data, 0.5) fd_out['sub' + ` i ` + 'run' + ` j `] = fd_outlier[0].tolist() for i in range(10, 17): for j in range(1, 4): # set general path for reaching dvars and fd files # also path for saving files txtpath = '../../data/ds005/sub0' + ` i ` + '/BOLD/task001_run00' + ` j ` + '/QA/' # dvars path and name, call function to get outliers
import numpy as np from outlierfunction import outlier for i in range(1, 10): for j in range(1, 4): # set general path for reaching dvars and fd files # also path for saving files txtpath = 'ds005/sub00' + ` i ` + '/BOLD/task001_run00' + ` j ` + '/QA/' # dvars path and name, call function to get outliers dvarsfile = txtpath + 'dvars.txt' dvarssave = txtpath + 'dvars_outlier_sub' + ` i ` + 'run' + ` j ` + '.txt' # common boundary for dvars is 0.3 - 0.5 # paper used 0.5 dvars_outlier = outlier(dvarsfile, dvarssave, 0.5) # fd path and name, call function to get outliers fdfile = txtpath + 'fd.txt' fdsave = txtpath + 'fd_outlier_sub' + ` i ` + 'run' + ` j ` + '.txt' # common boundary for fd is 0.2 - 0.5 # paper used 0.5 fd_outlier = outlier(fdfile, fdsave, 0.5) for i in range(10, 17): for j in range(1, 4): # set general path for reaching dvars and fd files # also path for saving files txtpath = 'ds005/sub0' + ` i ` + '/BOLD/task001_run00' + ` j ` + '/QA/' # dvars path and name, call function to get outliers dvarsfile = txtpath + 'dvars.txt' dvarssave = txtpath + 'dvars_outlier_sub' + ` i ` + 'run' + ` j ` + '.txt' # common boundary for dvars is 0.3 - 0.5 # paper used 0.5