Пример #1
0
def optimizeFuncNoLoop(input, input_label, layers, bias, weight, act_func_type,
                       batch, loss, epochs, lr):
    # In this we are writing the gradient descent

    input_label = input_label.reshape(input_label.shape[0], 1)
    total_loss = np.zeros(epochs)
    for e in range(0, epochs):
        batch_count = 0
        while batch_count < input.shape[0]:
            if (batch_count + batch) <= input.shape[0]:
                data = input[batch_count:(batch_count + batch), :]
                labels = input_label[batch_count:(batch_count + batch), :]
            elif (batch_count + batch) > input.shape[0]:
                data = input[batch_count:input.shape[0], :]
                labels = input_label[batch_count:(batch_count + batch), :]
            batch_count = batch_count + batch
            # Calculation of a_i and h_i
            a = [None] * layers
            h = [None] * layers
            # Calculating the a and h
            trail_ones = np.ones((1, data.shape[0]))
            modified_data = np.append(data.T, trail_ones, axis=0)
            for i in range(0, layers):
                modified_w_b = np.append(weight[i].T, bias[i], axis=1)
                a[i] = np.matmul(modified_w_b, modified_data)
                h[i] = af.actFunc(act_func_type, a[i])
                modified_data = np.append(h[i],
                                          np.ones((1, h[i].shape[1])),
                                          axis=0)

            h[layers - 1] = of.outputFunc(a[layers - 1])
            predicted_output = h[layers - 1]

            # Calculating the actual output through the label
            enc = OneHotEncoder(n_values=predicted_output.shape[0])
            actual_output = enc.fit_transform(labels).toarray().T

            total_loss[e] = total_loss[e] + clnl.calLossNoLoop(
                predicted_output, actual_output, act_func_type, labels, loss)

            # Back-Propagation step for each element
            dw, db = bpnl.backPropNoLoop(a, h, predicted_output, actual_output,
                                         loss, layers, weight, data,
                                         act_func_type)
            # Updating the weight to the new weight using the  dw and db
            for i in range(0, layers):
                weight[i] = weight[i] - lr * dw[i]
                bias[i] = bias[i] - lr * db[i]

    return total_loss, weight, bias
def momentum(input_data, input_label, val_data, val_label, layers, bias,
             weight, act_func_type, batch, loss, epochs, lr, anneal, gamma,
             expt_dir):
    # In this we are writing the gradient descent

    update_w = [0] * layers
    update_b = [0] * layers
    input_label = input_label.reshape(input_label.shape[0], 1)
    val_label = val_label.reshape(val_label.shape[0], 1)
    total_loss_train = np.zeros(epochs)
    total_val_loss = np.zeros(epochs)
    text_file_train = open(expt_dir + "log_train.txt", "w")
    text_file_val = open(expt_dir + "log_val.txt", "w")
    for e in range(0, epochs):
        batch_count = 0
        step = 1
        while batch_count < input_data.shape[0]:
            if (batch_count + batch) <= input_data.shape[0]:
                data = input_data[batch_count:(batch_count + batch), :]
                labels = input_label[batch_count:(batch_count + batch), :]
            elif (batch_count + batch) > input_data.shape[0]:
                data = input_data[batch_count:input_data.shape[0], :]
                labels = input_label[batch_count:(batch_count + batch), :]
            batch_count = batch_count + batch
            # Calculation of a_i and h_i
            a = [0] * layers
            h = [0] * layers
            # Calculating the a and h
            trail_ones = np.ones((1, data.shape[0]))
            modified_data = np.append(data.T, trail_ones, axis=0)
            for i in range(0, layers):
                modified_w_b = np.append(weight[i].T, bias[i], axis=1)
                a[i] = np.matmul(modified_w_b, modified_data)
                h[i] = af.actFunc(act_func_type, a[i])
                modified_data = np.append(h[i],
                                          np.ones((1, h[i].shape[1])),
                                          axis=0)

            h[layers - 1] = of.outputFunc(a[layers - 1])
            predicted_output = h[layers - 1]

            # Calculating the actual output through the label
            enc = OneHotEncoder(n_values=predicted_output.shape[0])
            actual_output = enc.fit_transform(labels).toarray().T

            total_loss_train[e] = total_loss_train[e] + clnl.calLossNoLoop(
                predicted_output, actual_output, act_func_type, labels, loss)

            # Back-Propagation step for each element
            dw, db = bpnl.backPropNoLoop(a, h, predicted_output, actual_output,
                                         loss, layers, weight, data,
                                         act_func_type)
            # Updating the weight to the new weight using the  dw and db
            for i in range(0, layers):
                update_w[i] = gamma * update_w[i] + lr * dw[i]
                update_b[i] = gamma * update_b[i] + lr * db[i]
                weight[i] = weight[i] - update_w[i]
                bias[i] = bias[i] - update_b[i]

            # Maintaining log file for the training error
            if step % 100 == 0:
                trail_ones = np.ones((1, input_data.shape[0]))
                modified_train_data = np.append(input_data.T,
                                                trail_ones,
                                                axis=0)
                pre_act = [0]
                for i in range(0, layers):
                    modified_w_b = np.append(weight[i].T, bias[i], axis=1)
                    pre_act = np.matmul(modified_w_b, modified_train_data)
                    act = af.actFunc(act_func_type, pre_act)
                    modified_train_data = np.append(act,
                                                    np.ones((1, act.shape[1])),
                                                    axis=0)
                pred_train_outputs = of.outputFunc(pre_act)
                pred_train_labels = np.argmax(pred_train_outputs, axis=0)
                pred_correct = np.sum(pred_train_labels == input_label.T)
                actual_count = input_label.shape[0]
                error = (actual_count - pred_correct) / actual_count * 100

                enc = OneHotEncoder(n_values=pred_train_outputs.shape[0])
                actual_output = enc.fit_transform(input_label).toarray().T
                train_loss = clnl.calLossNoLoop(pred_train_outputs,
                                                actual_output, act_func_type,
                                                input_label, loss)

                text_file_train.write(
                    "Epoch %s, Step %s, Loss: %f, Error: %f, lr: %f \n" %
                    (e, step, train_loss, error, lr))

            # Maintaining log file for the validation error
            if step % 100 == 0:

                a = [0] * layers
                h = [0] * layers
                trail_ones = np.ones((1, val_data.shape[0]))
                modified_data = np.append(val_data.T, trail_ones, axis=0)
                for i in range(0, layers):
                    modified_w_b = np.append(weight[i].T, bias[i], axis=1)
                    a[i] = np.matmul(modified_w_b, modified_data)
                    h[i] = af.actFunc(act_func_type, a[i])
                    modified_data = np.append(h[i],
                                              np.ones((1, h[i].shape[1])),
                                              axis=0)

                h[layers - 1] = of.outputFunc(a[layers - 1])
                predicted_val_output = h[layers - 1]

                # Calculating the actual output through the label
                enc = OneHotEncoder(n_values=predicted_val_output.shape[0])
                actual_val_output = enc.fit_transform(val_label).toarray().T

                total_val_loss[e] = clnl.calLossNoLoop(predicted_val_output,
                                                       actual_val_output,
                                                       act_func_type,
                                                       val_label, loss)

                pred_val_labels = np.argmax(predicted_val_output, axis=0)
                pred_correct = np.sum(pred_val_labels == val_label.T)
                actual_count = val_label.shape[0]
                error = (actual_count - pred_correct) / actual_count

                text_file_val.write(
                    "Epoch %s, Step %s, Loss: %f, Error: %f, lr: %f \n" %
                    (e, step, total_val_loss[e], error, lr))

            step = step + 1

        if anneal == True and (e + 1) % 5 == 0:
            lr = lr / 2

        print("Epoch Number:", e)

    text_file_train.close()
    text_file_val.close()
    return total_loss_train, total_val_loss, weight, bias
Пример #3
0
def momentum(input_data, input_label, val_data, val_label, layers, bias,
             weight, act_func_type, batch, loss, epochs, lr, anneal, gamma,
             expt_dir):
    # In this we are writing the gradient descent

    update_w = [0] * layers
    update_b = [0] * layers
    input_label = input_label.reshape(input_label.shape[0], 1)
    val_label = val_label.reshape(val_label.shape[0], 1)
    total_loss_train = np.zeros(epochs)
    total_val_loss = np.zeros(epochs)
    for e in range(0, epochs):
        batch_count = 0
        while batch_count < input_data.shape[0]:
            if (batch_count + batch) <= input_data.shape[0]:
                data = input_data[batch_count:(batch_count + batch), :]
                labels = input_label[batch_count:(batch_count + batch), :]
            elif (batch_count + batch) > input_data.shape[0]:
                data = input_data[batch_count:input_data.shape[0], :]
                labels = input_label[batch_count:(batch_count + batch), :]
            batch_count = batch_count + batch
            # Calculation of a_i and h_i
            a = [None] * layers
            h = [None] * layers
            # Calculating the a and h
            trail_ones = np.ones((1, data.shape[0]))
            modified_data = np.append(data.T, trail_ones, axis=0)
            for i in range(0, layers):
                modified_w_b = np.append(weight[i].T, bias[i], axis=1)
                a[i] = np.matmul(modified_w_b, modified_data)
                h[i] = af.actFunc(act_func_type, a[i])
                modified_data = np.append(h[i],
                                          np.ones((1, h[i].shape[1])),
                                          axis=0)

            h[layers - 1] = of.outputFunc(a[layers - 1])
            predicted_output = h[layers - 1]

            # Calculating the actual output through the label
            enc = OneHotEncoder(n_values=predicted_output.shape[0])
            actual_output = enc.fit_transform(labels).toarray().T

            total_loss_train[e] = total_loss_train[e] + clnl.calLossNoLoop(
                predicted_output, actual_output, act_func_type, labels, loss)

            # Back-Propagation step for each element
            dw, db = bpnl.backPropNoLoop(a, h, predicted_output, actual_output,
                                         loss, layers, weight, data,
                                         act_func_type)
            # Updating the weight to the new weight using the  dw and db
            for i in range(0, layers):
                update_w[i] = gamma * update_w[i] + lr * dw[i]
                update_b[i] = gamma * update_b[i] + lr * db[i]
                weight[i] = weight[i] - update_w[i]
                bias[i] = bias[i] - update_b[i]

        # For the loss at the validation
        a = [None] * layers
        h = [None] * layers
        trail_ones = np.ones((1, val_data.shape[0]))
        modified_data = np.append(val_data.T, trail_ones, axis=0)
        for i in range(0, layers):
            modified_w_b = np.append(weight[i].T, bias[i], axis=1)
            a[i] = np.matmul(modified_w_b, modified_data)
            h[i] = af.actFunc(act_func_type, a[i])
            modified_data = np.append(h[i],
                                      np.ones((1, h[i].shape[1])),
                                      axis=0)

        h[layers - 1] = of.outputFunc(a[layers - 1])
        predicted_val_output = h[layers - 1]

        # Calculating the actual output through the label
        enc = OneHotEncoder(n_values=predicted_val_output.shape[0])
        actual_val_output = enc.fit_transform(val_label).toarray().T

        total_val_loss[e] = clnl.calLossNoLoop(predicted_val_output,
                                               actual_val_output,
                                               act_func_type, val_label, loss)

        if anneal == True and (e + 1) % 5 == 0:
            lr = lr / 2
        print("epoch:", e)
    return total_loss_train, total_val_loss, weight, bias
def adam(input_data, input_label, val_data, val_label, layers, bias, weight,
         act_func_type, batch, loss, epochs, lr, anneal, gamma, expt_dir):
    # In this we are writing the gradient descent

    input_label = input_label.reshape(input_label.shape[0], 1)
    val_label = val_label.reshape(val_label.shape[0], 1)
    total_loss_train = np.zeros(epochs)
    total_val_loss = np.zeros(epochs)
    mtw, vtw, mthw, vthw = [0] * layers, [0] * layers, [0] * layers, [
        0
    ] * layers
    mtb, vtb, mthb, vthb = [0] * layers, [0] * layers, [0] * layers, [
        0
    ] * layers
    beta1, beta2 = 0.9, 0.999
    epsilon = 0
    t = 1
    for e in range(0, epochs):
        batch_count = 0
        while batch_count < input_data.shape[0]:
            if (batch_count + batch) <= input_data.shape[0]:
                data = input_data[batch_count:(batch_count + batch), :]
                labels = input_label[batch_count:(batch_count + batch), :]
            elif (batch_count + batch) > input_data.shape[0]:
                data = input_data[batch_count:input_data.shape[0], :]
                labels = input_label[batch_count:(batch_count + batch), :]
            batch_count = batch_count + batch
            # Calculation of a_i and h_i
            a = [None] * layers
            h = [None] * layers
            # Calculating the a and h
            trail_ones = np.ones((1, data.shape[0]))
            modified_data = np.append(data.T, trail_ones, axis=0)
            for i in range(0, layers):
                modified_w_b = np.append(weight[i].T, bias[i], axis=1)
                a[i] = np.matmul(modified_w_b, modified_data)
                h[i] = af.actFunc(act_func_type, a[i])
                modified_data = np.append(h[i],
                                          np.ones((1, h[i].shape[1])),
                                          axis=0)

            h[layers - 1] = of.outputFunc(a[layers - 1])
            predicted_output = h[layers - 1]

            # Calculating the actual output through the label
            enc = OneHotEncoder(n_values=predicted_output.shape[0])
            actual_output = enc.fit_transform(labels).toarray().T

            total_loss_train[e] = total_loss_train[e] + clnl.calLossNoLoop(
                predicted_output, actual_output, act_func_type, labels, loss)

            # Back-Propagation step for each element
            dw, db = bpnl.backPropNoLoop(a, h, predicted_output, actual_output,
                                         loss, layers, weight, data,
                                         act_func_type)
            # Updating the weight to the new weight using the  dw and db
            for i in range(0, layers):
                mtw[i] = beta1 * mtw[i] + (1 - beta1) * dw[i]
                vtw[i] = beta2 * vtw[i] + (1 - beta2) * np.multiply(
                    dw[i], dw[i])
                mthw[i] = mtw[i] / (1 - np.power(beta1, t))
                vthw[i] = vtw[i] / (1 - np.power(beta2, t))

                mtb[i] = beta1 * mtb[i] + (1 - beta1) * db[i]
                vtb[i] = beta2 * vtb[i] + (1 - beta2) * np.multiply(
                    db[i], db[i])
                mthb[i] = mtb[i] / (1 - np.power(beta1, t))
                vthb[i] = vtb[i] / (1 - np.power(beta2, t))

                weight[i] = weight[i] - lr * np.divide(
                    mthw[i], np.sqrt(vthw[i] + epsilon))
                bias[i] = bias[i] - lr * np.divide(mthb[i],
                                                   np.sqrt(vthb[i] + epsilon))
            t = t + 1

        # For the loss at the validation
        a = [None] * layers
        h = [None] * layers
        trail_ones = np.ones((1, val_data.shape[0]))
        modified_data = np.append(val_data.T, trail_ones, axis=0)
        for i in range(0, layers):
            modified_w_b = np.append(weight[i].T, bias[i], axis=1)
            a[i] = np.matmul(modified_w_b, modified_data)
            h[i] = af.actFunc(act_func_type, a[i])
            modified_data = np.append(h[i],
                                      np.ones((1, h[i].shape[1])),
                                      axis=0)

        h[layers - 1] = of.outputFunc(a[layers - 1])
        predicted_val_output = h[layers - 1]

        # Calculating the actual output through the label
        enc = OneHotEncoder(n_values=predicted_val_output.shape[0])
        actual_val_output = enc.fit_transform(val_label).toarray().T

        total_val_loss[e] = clnl.calLossNoLoop(predicted_val_output,
                                               actual_val_output,
                                               act_func_type, val_label, loss)

        if anneal == True and (e + 1) % 5 == 0:
            lr = lr / 2

        print("epoch:", e)
    return total_loss_train, total_val_loss, weight, bias
Пример #5
0
        weights, activation, batch_size, loss, epochs, lr, anneal, momentum,
        expt_dir)
# For making the file on putting the weights and biases
filename = save_dir + "Parameters_neurons" + str(
    hidden_layer_sizes[0]) + "_ecpochs" + str(
        epochs) + "_" + opt + "_lr" + str(
            lr) + "_act" + activation + "_layer" + str(
                num_hidden) + "_loss" + loss + "_.pickle"
with open(filename, "wb") as output_file:
    pickle.dump([train_weights, train_biases], output_file)

# For storing the test sample
trail_ones = np.ones((1, test_input.shape[0]))
modified_test_data = np.append(test_input.T, trail_ones, axis=0)
pre_act = [0]
for i in range(0, layers):
    modified_w_b = np.append(train_weights[i].T, train_biases[i], axis=1)
    pre_act = np.matmul(modified_w_b, modified_test_data)
    act = af.actFunc(activation, pre_act)
    modified_test_data = np.append(act, np.ones((1, act.shape[1])), axis=0)

pred_test_outputs = of.outputFunc(pre_act)
pred_test_labels = np.argmax(pred_test_outputs, axis=0)
ids = np.arange(test_input.shape[0])

headers = ["id", "label"]
test_filename = "sample_sub.csv"
df = pd.DataFrame([ids, pred_test_labels])
df = df.transpose()
df.to_csv(expt_dir + test_filename, index=False, header=headers)
def optimizeFuncLoop(data, labels, layers, bias, weight, act_func_type, batch,
                     loss, epochs, lr):
    # In this we are writing the gradient descent

    total_loss = np.zeros(epochs)
    for e in range(0, epochs):
        dw = [0] * layers
        db = [0] * layers
        itr = 0
        while itr < data.shape[0]:
            batch_count = 0
            while batch_count < batch and itr < data.shape[0]:
                # Calculation of a_i and h_i
                a = [None] * layers
                h = [None] * layers
                temp = data[itr, :].T
                # Calculating the a and h for the hidden layers
                for k in range(0, layers - 1):
                    x_part = (np.matmul(weight[k].T, temp)).reshape(
                        (np.matmul(weight[k].T, temp)).shape[0], 1)
                    a[k] = (x_part + bias[k])
                    h[k] = af.actFunc(act_func_type, a[k])
                    temp = h[k]

                # Calculating the a and h for the output layer
                x_part = (np.matmul(weight[layers - 1].T, temp)).reshape(
                    (np.matmul(weight[layers - 1].T, temp)).shape[0], 1)
                a[layers - 1] = (bias[layers - 1] + x_part)
                h[layers - 1] = of.outputFunc(a[layers - 1])
                predicted_output = h[layers - 1]

                # Calculating the actual output through the label
                actual_output = np.zeros(predicted_output.shape[0])
                actual_output = actual_output.reshape(actual_output.shape[0],
                                                      1)
                actual_output[labels[itr]] = 1

                total_loss[e] = total_loss[e] + cl.calLoss(
                    predicted_output, actual_output, act_func_type,
                    labels[itr], loss)

                # Back-Propagation step for each element
                grad_w, grad_b = bp.backProp(a, h, predicted_output,
                                             actual_output, loss, layers,
                                             weight, data[itr, :],
                                             act_func_type)

                # Accumulating the change of parameters
                for i in range(0, layers):
                    dw[i] = dw[i] + grad_w[i]
                    db[i] = db[i] + grad_b[i]

                itr = itr + 1
                batch_count += 1

            # Updating the weight to the new weight using the  dw and db
            for i in range(0, layers):
                weight[i] = weight[i] - lr * dw[i]
                bias[i] = bias[i] - lr * db[i]
            itr = itr + 1

    return total_loss, weight, bias