def ExecuteReasoner(self): onto = World() try: onto.get_ontology("file://" + self.input).load() sync_reasoner_pellet(onto, infer_property_values=True) onto.save(file=self.output) return True except: return False
def convert_worker(self, filename): db_path = os.path.join( self.db_dir, '.'.join( (os.path.splitext(os.path.basename(filename))[0], "sqlite3"))) if not os.path.isfile(db_path): self.Print(cDebug.LEVEL_DEVELOPMENT, 'Convert: ' + db_path) my_world = World() my_world.set_backend(filename=db_path) my_world.get_ontology('file://' + filename).load() my_world.save() if self.remove_source: os.remove(filename) return db_path
def _read_from_source(filename: str) -> Ontology: name = os.path.basename(filename) _, ext = os.path.splitext(name) if ext == ".json": with open(filename) as json_file: data = json.load(json_file) elif ext == ".pkl": with open(filename, "rb") as f: data = pickle.load(f) elif ext == ".owl": world = World() try: ontology = world.get_ontology(filename) onto = ontology.load() except OwlReadyOntologyParsingError as ex: return Ontology(name, {}, filename=filename, error_msg=ex.args[0]) with onto: data = _onto_to_tree(Thing, world) else: raise NotImplementedError(f"No readers for file {name}") assert isinstance(data, dict) return Ontology(name, data, filename=filename)
def find_candidate_instances(w2v_vectors, tagged_words, input_onto, topn): candidate_instances = defaultdict(list) world = World() onto = world.get_ontology(input_onto).load() onto_classes = onto.classes() for onto_class in onto_classes: instances = [ nlp.get_name_from_IRI(inst) for inst in onto.get_instances_of(onto_class) ] for inst in instances: if inst not in w2v_vectors.vocab.keys(): instances.remove(inst) similar = find_by_cos_similarity(w2v_vectors, instances, onto_class, topn) similar = filter_by_pos(similar, instances, tagged_words) for s in similar[:]: if s[1] <= 0.42: similar.remove(s) candidate_instances[onto_class] = similar return candidate_instances
def onto_get_var_limits(): da_vars = {} mec_vars = {} # creating a new world to isolate the reasoning results new_world = World() # Loading our ontologia onto = new_world.get_ontology(onto_dir_path).load() variables = onto.search(type=onto.Variable) for var in variables: try: if 'DA' in var.esVariableDe[0].get_name(): da_vars[django_names[var.get_name()]] = { 'min': var.tieneValorMinimo, 'max': var.tieneValorMaximo } # print(var.esVariableDe[0].get_name()) if 'MEC' in var.esVariableDe[0].get_name(): mec_vars[django_names[var.get_name()]] = { 'min': var.tieneValorMinimo, 'max': var.tieneValorMaximo } # print(var.esVariableDe[0].get_name()) except Exception as e: print("None", e) return da_vars, mec_vars
def sparql_query_owlready(self, query): """ ""SELECT ?p WHERE { <http://www.semanticweb.org/jiba/ontologies/2017/0/test#ma_pizza> <http://www.semanticweb.org/jiba/ontologies/2017/0/test#price> ?p . }"" """ my_world = World() onto = my_world.get_ontology( join(self._onto.path, self._onto.owl_file + ".owl")).load() graph = my_world.as_rdflib_graph() return list(graph.query_owlready(query))
def populate_ontology(candidate_instances, input_onto, output_onto): world = World() onto = world.get_ontology(input_onto).load() for onto_class, instances in candidate_instances.items(): print_class_and_similar(onto_class, instances) for inst in instances: _save_instance(onto, onto_class, inst) onto.save(file=output_onto)
def get_ontology_from_local_file(filename: str = '', db_dir: str = '', db_dir_name: str = '', use_owl_world: bool = True) -> Ontology: filename_with_prefix = 'file://' + filename if use_owl_world: if not os.path.isdir(db_dir): ret = FL.CreateDir(db_dir) my_world = World() my_world.set_backend(filename=db_dir_name) return my_world.get_ontology(filename_with_prefix).load() else: return get_ontology(filename_with_prefix).load()
def __iter__(self) -> Iterator[Optional[Tuple[Ontology, Scene]]]: for index, scene in enumerate(self.variation_dimensions): self.iterations += 1 if scene is not None: world = World(backend='sqlite', filename=':memory:', dbname=f"scene_db_{index:04}") with world.get_ontology(self.base_iri) as onto: self.domain_factory(onto) self.instantiate_scene(scene, onto) try: sync_reasoner_pellet(x=world, infer_data_property_values=True, infer_property_values=True, debug=self.debug) except Exception as e: onto.save("error.rdf.xml") raise e yield onto, scene else: yield None if self.max_tries is not None and self.iterations >= self.max_tries: break
def reasoner(data): # print(data.shape) # print("Inside OntoParser-Reasoner") # creating a new world to isolate the reasoning results # ontos = {n: World().get_ontology(onto_dir_path).load() # for n in range(data.shape[0])} new_world = World() # Loading the ontology onto = new_world.get_ontology(onto_dir_path).load() # Creating individuals of Lectura that will be used by the rules onto.Variable_Dil1_Entrada.tieneValorPropuesto = float(data[0]) onto.Lectura_AGV_Entrada.tieneValorCensado = float(data[1]) onto.Lectura_DQO_Entrada.tieneValorCensado = float(data[2]) onto.Lectura_Biomasa_Salida.tieneValorCensado = float(data[3]) onto.Lectura_DQO_Salida.tieneValorCensado = float(data[4]) onto.Lectura_AGV_Salida.tieneValorCensado = float(data[5]) onto.Variable_Dil2_Entrada.tieneValorPropuesto = float(data[7]) onto.Lectura_Ace_Salida.tieneValorCensado = float(data[9]) onto.Lectura_xa_Salida.tieneValorCensado = float(data[10]) onto.Lectura_xm_Salida.tieneValorCensado = float(data[11]) onto.Lectura_xh_Salida.tieneValorCensado = float(data[12]) onto.Lectura_mox_Salida.tieneValorCensado = float(data[13]) onto.Lectura_imec_Salida.tieneValorCensado = float(data[14]) onto.Lectura_QH2_Salida.tieneValorCensado = float(data[15]) # Apply the rules using pellet reasoner sync_reasoner_pellet(onto, infer_data_property_values=True, infer_property_values=True, debug=0) # Get new states for each process infered_states = get_infered_states(onto) return json.dumps(infered_states), onto
class OntologyManager: def __init__(self, iri="http://www.example.org/onto.owl"): self.typical_facts_list = list() self.a_box_members_list = list() self.scenarios_list = list() self.typical_members_list = list() self.cost_dict = dict() self.symptoms_dict = dict() self.my_world = World() self.big_world = World() self.onto = self.my_world.get_ontology(iri) def create_complementary_class(self, class_identifier): with self.onto: complementary_class = Not(class_identifier) return complementary_class def create_class(self, class_name): if not self.is_class_present(class_name): with self.onto: new_class = types.new_class(class_name, (Thing,)) return new_class else: return self.get_class(class_name) def create_property(self, property_name): with self.onto: new_property = types.new_class(property_name, (ObjectProperty,)) return new_property def add_sub_class(self, sub_class_identifier, super_class_identifier): with self.onto: sub_class_identifier.is_a.append(super_class_identifier) def add_member_to_class(self, member_name, class_identifier, symp: bool = False): self.a_box_members_list.append(AboxMember(class_identifier, member_name, symp)) return class_identifier(member_name) def add_member_to_multiple_classes(self, member_identifier, class_list, symp: bool = False): for c in class_list: member_identifier.is_a.append(c) self.a_box_members_list.append(AboxMember(c, member_identifier.name, symp)) # & operatore logico di owlready di intersezione. # r1 proprietà di owlready # only per ogni # some invece significa esiste # noinspection PyUnresolvedReferences def add_typical_fact(self, t_class_identifier, class_identifier, probability="No probability"): with self.onto: t_class_identifier_1 = self.create_class(t_class_identifier.name + "1") t_class_intersection = self.create_class( "Intersection" + t_class_identifier.name + t_class_identifier_1.name) t_class_intersection.equivalent_to = [t_class_identifier & t_class_identifier_1] self.add_sub_class(t_class_intersection, class_identifier) r1 = self.create_property("r1") t_class_identifier_1.is_a.append(r1.only(Not(t_class_identifier) & t_class_identifier_1)) not_t_class_identifier_1 = self.create_class("Not" + t_class_identifier_1.name) not_t_class_identifier_1.is_a.append(r1.some(t_class_identifier & t_class_identifier_1)) self.typical_facts_list.append(TypicalFact(t_class_identifier, class_identifier, probability)) # C e C1 # Interesezione serve per esplicitare il concetto della doppia appartenenza def set_as_typical_member(self, member_name, t_class_identifier, t_class_identifier_1): with self.onto: print("Membro tipico:") t_class_identifier(member_name) t_class_identifier_1(member_name) t_class_intersection = self.get_class("Intersection" + t_class_identifier.name + t_class_identifier_1.name) t_class_intersection(member_name) print(member_name + " is_a " + t_class_identifier.name) print(member_name + " is_a " + t_class_identifier_1.name) print(member_name + " is_a " + t_class_intersection.name) def is_class_present(self, class_name): if self.get_class(class_name) is not None: return True return False def get_class(self, class_name): return self.onto[class_name] def consistency(self, condition: bool = False): try: with self.onto: if condition: sync_reasoner(self.my_world) classi_incosistenti = list(self.my_world.inconsistent_classes()) if not len(classi_incosistenti) == 0: return classi_incosistenti else: sync_reasoner(self.big_world) return "The ontology is consistent" except OwlReadyInconsistentOntologyError: return "The ontology is inconsistent" def store_for_reasoning(self, member_name: str, class_id: object): self.symptoms_dict.update({class_id: member_name}) def add_symptoms_to_kb(self): for class_sy, pname, in self.symptoms_dict.items(): class_c = self.create_class(class_sy.name) not_class_c = self.create_class("Not(" + class_sy.name + ")") class_c.equivalent_to = [Not(not_class_c)] self.add_member_to_class(pname, not_class_c, symp=True) print("Sintomo aggiunto: " + pname + ": " + not_class_c.name) def save_base_world(self): self.onto.save("ontoBase.owl", format="ntriples") def create_new_world(self): self.onto.destroy() self.big_world = World() self.onto = self.big_world.get_ontology( "file://" + PATH_TO_ONTO + "//ontoBase.owl").load() # .load(True, None, True) def show_classes_iri(self): for c in self.big_world.classes(): print(str(c.name) + " is_a " + str(c.is_a)) def show_members_in_classes(self): for c in self.big_world.classes(): for m in c.instances(): print(m.name + " member_of " + c.name) def show_classes_iri_my(self): for c in self.my_world.classes(): print(str(c.name) + " is_a " + str(c.is_a)) def show_members_in_classes_my(self): for c in self.my_world.classes(): for m in c.instances(): print(m.name + " member_of " + c.name) def show_scenarios(self): num_scenario = 1 for s in self.scenarios_list: print("INIZIO SCENARIO " + str(num_scenario)) record = "" if len(s.list_of_typical_members) == 0: print("Scenario vuoto" + "\n" + "Probabilità scenario: " + str(s.probability)) else: for tm in s.list_of_typical_members: record = record + "Typical(" + tm.t_class_identifier.name + ")" + "," + tm.member_name + "," \ + str(tm.probability) + "\n" record = record + "Probabilità scenario: " + str(s.probability) print(record) print("FINE SCENARIO " + str(num_scenario)) print("\n") num_scenario = num_scenario + 1 @staticmethod def show_a_specific_scenario(scenario): print("INIZIO SCENARIO") record = "" if len(scenario.list_of_typical_members) == 0: print("Scenario vuoto;" + "\nProbabilità scenario: " + str(scenario.probability)) else: for tm in scenario.list_of_typical_members: record = record + tm.t_class_identifier.name + "," + tm.member_name + "," + str(tm.probability) + "; " record = record + "\nProbabilità scenario: " + str(scenario.probability) print(record) print("FINE SCENARIO") # TODO Metodi mai utilizzati decidere cosa farne @staticmethod def destroy_class(class_identifier): destroy_entity(class_identifier) @staticmethod def set_classes_as_disjoint(classes_identifier_list): AllDisjoint(classes_identifier_list) @staticmethod def remove_onto_file(): if os.path.exists("ontoBase.owl"): os.remove("ontoBase.owl") else: print("The file does not exist")
class OntologyInspector(object): def __init__(self, owl_file, path, endpoint=None, inspector=None): self.owl_file = owl_file.replace(".owl", "") self.path = path self._onto = GenericOntology(join(self.path, self.owl_file)) self.world = World() self.world.get_ontology(join(self.path, self.owl_file + ".owl")).load() self.endpoint = endpoint self.inspector = inspector or SPARQLQueries(endpoint, self) self.list_labels = set() # An unique list of ontology labels self.superclass_for_class = {} self.__load_subclasses__() self.__nsmap = {} ##mapping of namespaces @property def ontology(self): """ owlready2 ontology format """ return self._onto.onto def reload_ontology(self): """ reload from disk """ self._onto = GenericOntology(join(self.path, self.owl_file)) def update_ontology(self, onto): """ owlready2 ontology format """ self._onto.onto = onto def __get_owl_root_node__(self): try: from lxml import etree except: import xml.etree.cElementTree as etree owl_file = self.path + '/' + self.owl_file + ".owl" owl_root = etree.parse(owl_file).getroot() self.nsmap = owl_root.nsmap.copy() self.nsmap['xmlns'] = self.nsmap.pop(None) return owl_root def __load_subclasses__(self): owl_root = self.__get_owl_root_node__() for class_obj in owl_root.findall('{%s}Class' % owl_root.nsmap['owl']): onto_label = class_obj.get('{%s}about' % owl_root.nsmap['rdf']) self.list_labels.add(onto_label) subclass_of_obj = class_obj.find('{%s}subClassOf' % owl_root.nsmap['rdfs']) if subclass_of_obj is not None: superclass_label = subclass_of_obj.get('{%s}resource' % owl_root.nsmap['rdf']) self.superclass_for_class[onto_label] = superclass_label def is_leaf_class(self, onto_label): """ Checks if the ontology label provided (for instance http://dbpedia.org/ontology/SportsTeam) is a leaf in the DBpedia ontology tree or not It is a leaf if it is not super-class of any other class in the ontology @param onto_label: the ontology label @type onto_label: string @return: whether it is a leaf or not @rtype: bool """ is_super_class = False for subclass, superclass in list(self.superclass_for_class.items()): if superclass == onto_label: is_super_class = True break if not is_super_class and onto_label not in self.list_labels: return None return not is_super_class def get_ontology_path(self, onto_label): ''' Returns the path of ontology classes for the given ontology label (is-a relations) @param onto_label: the ontology label (could be http://dbpedia.org/ontology/SportsTeam or just SportsTeam) @type onto_label: str @return: list of ontology labels @rtype: list ''' thing_label = '%sThing' % self.nsmap['owl'] if onto_label == thing_label: return [thing_label] else: if self.nsmap[ 'xmlns'] not in onto_label: # To allow things like "SportsTeam instead of http://dbpedia.org/ontology/SportsTeam onto_label = self.nsmap['xmlns'] + onto_label if onto_label not in self.superclass_for_class: return [] else: super_path = self.get_ontology_path( self.superclass_for_class[onto_label]) super_path.insert(0, onto_label) return super_path def get_depth(self, onto_label): ''' Returns the depth in the ontology hierarchy for the given ontology label (is-a relations) @param onto_label: the ontology label (could be http://dbpedia.org/ontology/SportsTeam or just SportsTeam) @type onto_label: str @return: depth @rtype: int ''' path = self.get_ontology_path(onto_label) return len(path) def search(self, *args, **kwargs): return self.ontology.search(*args, **kwargs) def search_one(self, *args, **kwargs): return self.ontology.search_one(*args, **kwargs) def search_by_iri(self, iri): return self.ontology.search(iri=iri) def search_by_type(self, typ): return self.ontology.search(type=typ) def search_by_subclass_of(self, subclass_of): return self.ontology.search(subclass_of=subclass_of) def search_by_is_a(self, is_a): return self.ontology.search(is_a=is_a) def as_sql(self, query, name=None, path=None): """ search triples and export result in sql db""" name = name or query with GenericSQLDatabase(name, path) as db: triples = self.inspector.triples(query) for triple in triples: thing = triple["subject"]["value"] prop = triple["predicate"]["value"] value = triple["object"]["value"] t = db.add_thing(thing) p = db.add_property(prop, value=value) t.properties.append(p) return db def from_sql(self, path): return self def hermit_reason(self): """ load from disk, reason and return owlready2 ontology format""" self.world = World() onto = self.world.get_ontology(join(self.path, self.owl_file + ".owl")).load() sync_reasoner_hermit(self.world) return onto def pellet_reason(self): """ load from disk, reason and return owlready2 ontology format""" self.world = World() onto = self.world.get_ontology(join(self.path, self.owl_file + ".owl")).load() sync_reasoner_pellet(self.world) return onto def EYE_reason(self, data, rules): ''' data = """ @prefix ppl: <http://example.org/people#>. @prefix foaf: <http://xmlns.com/foaf/0.1/>. ppl:Cindy foaf:knows ppl:John. ppl:Cindy foaf:knows ppl:Eliza. ppl:Cindy foaf:knows ppl:Kate. ppl:Eliza foaf:knows ppl:John. ppl:Peter foaf:knows ppl:John. """ rules = """ @prefix foaf: <http://xmlns.com/foaf/0.1/>. { ?personA foaf:knows ?personB. } => { ?personB foaf:knows ?personA. }. """ output = """ PREFIX ppl: <http://example.org/people#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> ppl:Cindy foaf:knows ppl:John. ppl:Cindy foaf:knows ppl:Eliza. ppl:Cindy foaf:knows ppl:Kate. ppl:Eliza foaf:knows ppl:John. ppl:Peter foaf:knows ppl:John. ppl:John foaf:knows ppl:Cindy. ppl:Eliza foaf:knows ppl:Cindy. ppl:Kate foaf:knows ppl:Cindy. ppl:John foaf:knows ppl:Eliza. ppl:John foaf:knows ppl:Peter. """ ''' return EYE_rest(data, rules)
class KnowledgeBase(AbstractKnowledgeBase): """ Knowledge Base Class representing Tbox and Abox along with the concept hierarchy """ def __init__(self, path): super().__init__() self.path = path self.world = World() self.onto = self.world.get_ontology('file://' + self.path).load(reload=True) self.property_hierarchy = PropertyHierarchy(self.onto) self.name = self.onto.name self.parse() self._concept_generator = ConceptGenerator( concepts=self.uri_to_concept, thing=self.thing, nothing=self.nothing, onto=self.onto) self.describe() def instance_retrieval(self, c: Concept): if c.instances is None: return self._concept_generator.instance_retrieval(c) return c.instances def instance_retrieval_from_iterable(self, nodes: Iterable): return [self.instance_retrieval(n.concept) for n in nodes] def instance_retrieval_parallel_from_iterable(self, nodes: Iterable): """ with multiprocessing.Pool(processes=4) as executor: instances = executor.map(self.concept_generator.instance_retrieval_node, nodes) return instances with concurrent.futures.ThreadPoolExecutor() as executor: instances = executor.map(self.concept_generator.instance_retrieval_node, nodes) return instances => The least efficient. with concurrent.futures.ProcessPoolExecutor() as executor: instances = executor.map(self.concept_generator.instance_retrieval_node, nodes) return instances """ with multiprocessing.Pool(processes=4) as executor: instances = executor.map( self._concept_generator.instance_retrieval_node, nodes) return instances def clean(self): """ Clearn all stored values if there is any. @return: """ def __concept_hierarchy_fill(self, owl_concept, our_concept): """ our_concept can not be Nothing or Thing """ has_sub_concept = False # 3. Get all sub concepts of input concept. for owlready_subclass_concept_A in owl_concept.descendants( include_self=False): if owlready_subclass_concept_A.name in [ 'Nothing', 'Thing', 'T', '⊥' ]: raise ValueError has_sub_concept = True # 3.2 Map them into the corresponding our Concept objects. subclass_concept_A = self.uri_to_concept[ owlready_subclass_concept_A.iri] # 3.3. Add all our sub concepts into the concept the top down concept hierarchy. self.top_down_concept_hierarchy[our_concept].add( subclass_concept_A) self.down_top_concept_hierarchy[subclass_concept_A].add( our_concept) # 4. Get all super concepts of input concept. for owlready_superclass_concept_A in owl_concept.ancestors( include_self=False): if owlready_superclass_concept_A.name == 'Thing' and len( [i for i in owl_concept.ancestors(include_self=False)]) == 1: self.top_down_direct_concept_hierarchy[self.thing].add( our_concept) self.down_top_direct_concept_hierarchy[our_concept].add( self.thing) else: # 3.2 Map them into the corresponding our Concept objects. superclass_concept_A = self.uri_to_concept[ owlready_superclass_concept_A.iri] # 3.3. Add all our super concepts into the concept the down to concept concept hierarchy. self.down_top_concept_hierarchy[our_concept].add( superclass_concept_A) self.top_down_concept_hierarchy[superclass_concept_A].add( our_concept) # 4. If concept does not have any sub concept, then concept is a leaf concept. # Every leaf concept is directly related to Nothing. if has_sub_concept is False: self.top_down_direct_concept_hierarchy[our_concept].add( self.nothing) self.down_top_direct_concept_hierarchy[self.nothing].add( our_concept) def __direct_concept_hierarchy_fill(self, owlready_concept_A, concept_A, onto): for owlready_direct_subclass_concept_A in owlready_concept_A.subclasses( world=onto.world): # returns direct subclasses if owlready_concept_A == owlready_direct_subclass_concept_A: print(owlready_concept_A) print(owlready_direct_subclass_concept_A) raise ValueError direct_subclass_concept_A = self.uri_to_concept[ owlready_direct_subclass_concept_A.iri] self.top_down_direct_concept_hierarchy[concept_A].add( direct_subclass_concept_A) self.down_top_direct_concept_hierarchy[ direct_subclass_concept_A].add(concept_A) def __build_hierarchy(self, onto: Ontology) -> None: """ Builds concept sub and super classes hierarchies. 1) self.top_down_concept_hierarchy is a mapping from Concept objects to a set of Concept objects that are direct subclasses of given Concept object. 2) self.down_top_concept_hierarchy is a mapping from Concept objects to set of Concept objects that are direct superclasses of given Concept object. """ # 1. (Mapping from string URI to Class Expressions, Thing Concept, Nothing Concept self.uri_to_concept, self.thing, self.nothing = parse_tbox_into_concepts( onto) assert len(self.uri_to_concept) > 2 assert self.thing.iri == 'http://www.w3.org/2002/07/owl#Thing' assert self.thing.name == '⊤' assert self.nothing.iri == 'http://www.w3.org/2002/07/owl#Nothing' assert self.nothing.name == '⊥' self.individuals = self.thing.instances self.down_top_concept_hierarchy[self.thing] = set() for IRI, concept_A in self.uri_to_concept.items( ): # second loop over concepts in the execution, assert IRI == concept_A.iri try: assert len(onto.search(iri=IRI)) == 1 except AssertionError: # Thing and Nothing is not added into hierarchy assert IRI in [ 'http://www.w3.org/2002/07/owl#Thing', 'http://www.w3.org/2002/07/owl#Nothing' ] assert concept_A.name in ['⊤', '⊥'] continue owlready_concept_A = onto.search(iri=concept_A.iri)[0] assert owlready_concept_A.iri == concept_A.iri self.__concept_hierarchy_fill(owlready_concept_A, concept_A) self.__direct_concept_hierarchy_fill(owlready_concept_A, concept_A, onto) # All concepts are subsumed by Thing. self.top_down_concept_hierarchy[self.thing].add(concept_A) self.down_top_concept_hierarchy[concept_A].add(self.thing) # All concepts subsume Nothing. self.top_down_concept_hierarchy[concept_A].add(self.nothing) self.down_top_concept_hierarchy[self.nothing].add(concept_A) self.top_down_concept_hierarchy[self.thing].add(self.nothing) self.down_top_concept_hierarchy[self.nothing].add(self.thing) ################################################################################################################ # Sanity checking # 1. Did we parse classes correctly ? owlready2_classes = {i.iri for i in onto.classes()} our_classes = {k for k, v in self.uri_to_concept.items()} try: assert our_classes.issuperset(owlready2_classes) and ( our_classes.difference(owlready2_classes) == { 'http://www.w3.org/2002/07/owl#Thing', 'http://www.w3.org/2002/07/owl#Nothing' }) except AssertionError: raise AssertionError('Assertion error => at superset checking.') try: # Thing subsumes all parsed concept except itself. assert len(self.top_down_concept_hierarchy[self.thing]) == ( len(our_classes) - 1) assert len(self.down_top_concept_hierarchy[self.nothing]) == ( len(our_classes) - 1) except AssertionError: raise AssertionError( 'Assertion error => at concept hierarchy checking.') # start from here try: assert len(self.down_top_concept_hierarchy[self.nothing]) == ( len(our_classes) - 1) assert len(self.top_down_direct_concept_hierarchy[self.thing]) >= 1 except AssertionError: raise AssertionError( 'Assertion error => total number of parsed concept checking') # 2. Did we create top down direct concept hierarchy correctly ? for concept, direct_sub_concepts in self.top_down_direct_concept_hierarchy.items( ): for dsc in direct_sub_concepts: assert concept.instances.issuperset(dsc.instances) # 3. Did we create top down concept hierarchy correctly ? for concept, direct_sub_concepts in self.top_down_concept_hierarchy.items( ): for dsc in direct_sub_concepts: assert concept.instances.issuperset(dsc.instances) # 3. Did we create down top direct concept hierarchy correctly ? for concept, direct_super_concepts in self.down_top_direct_concept_hierarchy.items( ): for dsc in direct_super_concepts: assert concept.instances.issubset(dsc.instances) # 4. Did we create down top concept hierarchy correctly ? for concept, direct_super_concepts in self.down_top_concept_hierarchy.items( ): for dsc in direct_super_concepts: try: assert concept.instances.issubset(dsc.instances) except AssertionError: raise AssertionError('Subset error') def parse(self): """ Top-down and bottom up hierarchies are constructed from from owlready2.Ontology """ self.__build_hierarchy(self.onto) # OPERATIONS def negation(self, concept: Concept) -> Concept: """ Return a Concept object that is a negation of given concept.""" return self._concept_generator.negation(concept) def union(self, conceptA: Concept, conceptB: Concept) -> Concept: """Return a concept c == (conceptA OR conceptA)""" return self._concept_generator.union(conceptA, conceptB) def intersection(self, conceptA: Concept, conceptB: Concept) -> Concept: """Return a concept c == (conceptA AND conceptA)""" return self._concept_generator.intersection(conceptA, conceptB) def existential_restriction(self, concept: Concept, property_) -> Concept: """Return a concept c == (\exists R.C)""" return self._concept_generator.existential_restriction( concept, property_) def universal_restriction(self, concept: Concept, property_) -> Concept: """Return a concept c == (\forall R.C)""" return self._concept_generator.universal_restriction( concept, property_) @staticmethod def is_atomic(c: owlready2.entity.ThingClass): """ Check whether input owlready2 concept object is atomic concept. This is a workaround @param c: @return: """ assert isinstance(c, owlready2.entity.ThingClass) if '¬' in c.name and not (' ' in c.name): return False elif ' ' in c.name or '∃' in c.name or '∀' in c.name: return False else: return True def get_leaf_concepts(self, concept: Concept) -> Generator: """ Return : { x | (x subClassOf concept) AND not exist y: y subClassOf x )} """ assert isinstance(concept, Concept) for leaf in self.concepts_to_leafs[concept]: yield leaf @parametrized_performance_debugger() def negation_from_iterables(self, s: Iterable) -> Generator: """ Return : { x | ( x \equiv not s} """ assert isinstance(s, Iterable) for item in s: yield self._concept_generator.negation(item) # @parametrized_performance_debugger() def get_direct_sub_concepts(self, concept: Concept) -> Generator: """ Return : { x | ( x subClassOf concept )} """ assert isinstance(concept, Concept) yield from self.top_down_direct_concept_hierarchy[concept] def get_all_sub_concepts(self, concept: Concept): """ Return : { x | ( x subClassOf concept ) OR ...""" assert isinstance(concept, Concept) yield from self.top_down_concept_hierarchy[concept] def get_direct_parents(self, concept: Concept) -> Generator: """ Return : { x | (concept subClassOf x)} """ assert isinstance(concept, Concept) yield from self.down_top_direct_concept_hierarchy[concept] def get_parents(self, concept: Concept) -> Generator: """ Return : { x | (concept subClassOf x)} """ yield from self.down_top_concept_hierarchy[concept] def most_general_existential_restrictions(self, concept: Concept) -> Generator: """ Return : { \exist.r.x | r \in MostGeneral r} """ assert isinstance(concept, Concept) for prob in self.property_hierarchy.get_most_general_property(): yield self._concept_generator.existential_restriction( concept, prob) def union_from_iterables(self, concept_a: Iterable, concept_b: Iterable): temp = set() seen = set() for i in concept_a: for j in concept_b: if (i.name, j.name) in seen: continue u = self._concept_generator.union(i, j) seen.add((i.name, j.name)) seen.add((j.name, i.name)) temp.add(u) return temp def intersect_from_iterables(self, concept_a, concept_b): temp = set() seen = set() for i in concept_a: for j in concept_b: if (i.name, j.name) in seen: continue and_ = self._concept_generator.intersection(i, j) seen.add((i.name, j.name)) seen.add((j.name, i.name)) temp.add(and_) return temp def most_general_universal_restrictions(self, concept: Concept) -> Generator: """ Return : { \forall.r.x | r \in MostGeneral r} """ assert isinstance(concept, Concept) for prob in self.property_hierarchy.get_most_general_property(): yield self._concept_generator.universal_restriction(concept, prob)
def __init__(self, data_dir_path): my_world = World() # path to the owl file is given here my_world.get_ontology("file://%s" % data_dir_path).load() sync_reasoner(my_world) # reasoner is started and synchronized here self.graph = my_world.as_rdflib_graph()
def update_onto_limits(var_boundaries): # print("Updating boundaries") # print(var_boundaries) # creating a new world to isolate the reasoning results new_world = World() # Loading our ontologia onto = new_world.get_ontology(onto_dir_path).load() # Updating DA variables onto.Variable_Dil1_Entrada.tieneValorMinimo = float( var_boundaries.loc['min']['da_dil1']) onto.Variable_AGV_Entrada.tieneValorMinimo = float( var_boundaries.loc['min']['da_agv_in']) onto.Variable_DQO_Entrada.tieneValorMinimo = float( var_boundaries.loc['min']['da_dqo_in']) onto.Variable_Biomasa_Salida.tieneValorMinimo = float( var_boundaries.loc['min']['da_biomasa_x']) onto.Variable_DQO_Salida.tieneValorMinimo = float( var_boundaries.loc['min']['da_dqo_out']) onto.Variable_AGV_Salida.tieneValorMinimo = float( var_boundaries.loc['min']['da_agv_out']) onto.Variable_Dil1_Entrada.tieneValorMaximo = float( var_boundaries.loc['max']['da_dil1']) onto.Variable_AGV_Entrada.tieneValorMaximo = float( var_boundaries.loc['max']['da_agv_in']) onto.Variable_DQO_Entrada.tieneValorMaximo = float( var_boundaries.loc['max']['da_dqo_in']) onto.Variable_Biomasa_Salida.tieneValorMaximo = float( var_boundaries.loc['max']['da_biomasa_x']) onto.Variable_DQO_Salida.tieneValorMaximo = float( var_boundaries.loc['max']['da_dqo_out']) onto.Variable_AGV_Salida.tieneValorMaximo = float( var_boundaries.loc['max']['da_agv_out']) # Updating MEC variables onto.Variable_Dil2_Entrada.tieneValorMinimo = float( var_boundaries.loc['min']['mec_dil2']) onto.Variable_Eapp_Entrada.tieneValorMinimo = float( var_boundaries.loc['min']['mec_eapp']) onto.Variable_Ace_Salida.tieneValorMinimo = float( var_boundaries.loc['min']['mec_ace']) onto.Variable_xa_Salida.tieneValorMinimo = float( var_boundaries.loc['min']['mec_xa']) onto.Variable_xm_Salida.tieneValorMinimo = float( var_boundaries.loc['min']['mec_xm']) onto.Variable_xh_Salida.tieneValorMinimo = float( var_boundaries.loc['min']['mec_xh']) onto.Variable_mox_Salida.tieneValorMinimo = float( var_boundaries.loc['min']['mec_mox']) onto.Variable_imec_Salida.tieneValorMinimo = float( var_boundaries.loc['min']['mec_imec']) onto.Variable_QH2_Salida.tieneValorMinimo = float( var_boundaries.loc['min']['mec_qh2']) onto.Variable_Dil2_Entrada.tieneValorMaximo = float( var_boundaries.loc['max']['mec_dil2']) onto.Variable_Eapp_Entrada.tieneValorMaximo = float( var_boundaries.loc['max']['mec_eapp']) onto.Variable_Ace_Salida.tieneValorMaximo = float( var_boundaries.loc['max']['mec_ace']) onto.Variable_xa_Salida.tieneValorMaximo = float( var_boundaries.loc['max']['mec_xa']) onto.Variable_xm_Salida.tieneValorMaximo = float( var_boundaries.loc['max']['mec_xm']) onto.Variable_xh_Salida.tieneValorMaximo = float( var_boundaries.loc['max']['mec_xh']) onto.Variable_mox_Salida.tieneValorMaximo = float( var_boundaries.loc['max']['mec_mox']) onto.Variable_imec_Salida.tieneValorMaximo = float( var_boundaries.loc['max']['mec_imec']) onto.Variable_QH2_Salida.tieneValorMaximo = float( var_boundaries.loc['max']['mec_qh2']) onto.save(onto_dir_path, format="rdfxml") print("limits updated") print()
def get_ontology_from_database(iri, db_dir_name, exclusive=True) -> Ontology: my_world = World() my_world.set_backend(filename=db_dir_name, exclusive=exclusive) return my_world.get_ontology(iri).load()