Пример #1
0
def save_schema():
    owm = OWM()

    for module in (
            'owmeta.neuron',
            'owmeta.worm',
            'owmeta.biology',
            'owmeta.cell',
            'owmeta.channel',
            'owmeta.channelworm',
            'owmeta.connection',
            'owmeta.document',
            'owmeta.evidence',
            'owmeta.experiment',
            'owmeta.muscle',
            'owmeta.network',
            'owmeta.plot',
            'owmeta.website',
            'owmeta.data_trans.bibtex',
            'owmeta.data_trans.connections',
            'owmeta.data_trans.context_merge',
            'owmeta.data_trans.data_with_evidence_ds',
            'owmeta.data_trans.neuron_data',
            'owmeta.data_trans.wormatlas',
            'owmeta.data_trans.wormbase',
            'owmeta.sources',
            'owmeta.translators',
    ):
        owm.save(module)
Пример #2
0
 def setUp(self):
     self.testdir = tempfile.mkdtemp(prefix=__name__ + '.')
     self.startdir = os.getcwd()
     os.chdir(self.testdir)
     self.cut = OWM()
     self.cut.non_interactive = True
     self._default_conf = {
         'rdf.store_conf': '$HERE/worm.db',
         IMPORTS_CONTEXT_KEY: 'http://example.org/imports'
     }
Пример #3
0
def test_save_imports(owm_project):
    modpath = owm_project.make_module('test_module')
    owm_project.writefile(p(modpath, 'monkey.py'),
                          'tests/test_modules/owmclitest04_monkey_giraffe.py')

    print(owm_project.sh('owm save test_module.monkey'))
    with OWM(owmdir=p(owm_project.testdir, '.owm')).connect() as conn:
        ctx = Context(ident=conn.conf[IMPORTS_CONTEXT_KEY], conf=conn.conf)
        trips = set(ctx.stored.rdf_graph().triples((None, None, None)))
        assert (URIRef(conn.conf[DEFAULT_CONTEXT_KEY]), CONTEXT_IMPORTS,
                URIRef('http://example.org/primate/monkey')) in trips
        assert (URIRef(conn.conf[DEFAULT_CONTEXT_KEY]), CONTEXT_IMPORTS,
                URIRef('http://example.org/ungulate/giraffe')) in trips
Пример #4
0
class BaseTest(unittest.TestCase):
    def setUp(self):
        self.testdir = tempfile.mkdtemp(prefix=__name__ + '.')
        self.startdir = os.getcwd()
        os.chdir(self.testdir)
        self.cut = OWM()
        self.cut.non_interactive = True
        self._default_conf = {
            'rdf.store_conf': '$HERE/worm.db',
            IMPORTS_CONTEXT_KEY: 'http://example.org/imports'
        }

    def tearDown(self):
        os.chdir(self.startdir)
        shutil.rmtree(self.testdir)
        self.cut.disconnect()

    def _init_conf(self, conf=None):
        my_conf = dict(self._default_conf)
        if conf:
            my_conf.update(conf)
        os.mkdir('.owm')
        with open(p('.owm', 'owm.conf'), 'w') as f:
            json.dump(my_conf, f)
Пример #5
0
def add_bundle(owm_project, descriptor=None):
    owm_project.writefile(
        'abundle.yml', descriptor or '''\
    ---
    id: abundle
    description: I'm a description
    includes: ["http://example.org/test_ctx"]
    ''')
    with OWM(owmdir=p(owm_project.testdir, OD)).connect() as conn:
        with transaction.manager:
            graph = conn.conf['rdf.graph']
            sg = graph.get_context('http://example.org/test_ctx')
            sg.add((URIRef('http://example.org/a'),
                    URIRef('http://example.org/b'), Literal('c')))

    owm_project.sh('owm bundle register abundle.yml')
Пример #6
0
    def build_matrix(self):
        conn = OWM().connect()
        ctx = conn(Context)(ident='http://openworm.org/data')
        net = ctx.stored(Worm).query().neuron_network()
        neurons = sorted(list(net.neuron()), key=lambda x: x.name())
        neuron_names = [n.name() for n in neurons]
        n_neurons = len(neuron_names)
        neuron_ids = range(0, n_neurons)
        name2id = dict([(name, id)
                        for name, id in zip(neuron_names, neuron_ids)])
        neuron_neurotransmitters = [n.neurotransmitter() for n in neurons]

        def is_inhibitory(synapse):
            if synapse.synclass() is not None:
                return 'GABA' in synapse.synclass()
            else:
                return 'GABA' in synapse.pre_cell().neurotransmitter()

        connections = list(net.synapse())
        exc_syn_matrix = np.zeros((n_neurons, n_neurons))
        inh_syn_matrix = np.zeros((n_neurons, n_neurons))
        gj_matrix = np.zeros((n_neurons, n_neurons))
        for connection in connections:
            pre_cell = connection.pre_cell()
            post_cell = connection.post_cell()
            weight = connection.number()
            try:
                if connection.syntype() == 'send':  #Chemical synapses
                    if is_inhibitory(connection):
                        inh_syn_matrix[name2id[pre_cell.name()],
                                       name2id[post_cell.name()]] += weight
                    else:
                        exc_syn_matrix[name2id[pre_cell.name()],
                                       name2id[post_cell.name()]] += weight
                elif connection.syntype() == 'gapJunction':
                    gj_matrix[name2id[pre_cell.name()],
                              name2id[post_cell.name()]] = weight
            except KeyError:
                pass  # Non-neuron was found.
        # Save results in npy format
        np.save(self.root + self.exc_path, exc_syn_matrix)
        np.save(self.root + self.inh_path, inh_syn_matrix)
        np.save(self.root + self.gj_path, gj_matrix)

        return exc_syn_matrix, inh_syn_matrix, gj_matrix
Пример #7
0
def test_translator_list(owm_project):
    expected = URIRef('http://example.org/trans1')
    with OWM(owmdir=p(owm_project.testdir, '.owm')).connect() as conn:
        with transaction.manager:
            # Create data sources
            ctx = conn(Context)(ident='http://example.org/context')
            conn.mapper.process_class(DT1)

            DT1.definition_context.save(conn.rdf)
            conn.mapper.declare_python_class_registry_entry(
                DT1, DataTranslator)
            # Create a translator
            ctx(DT1)(ident=expected)

            ctx_id = conn.conf[DEFAULT_CONTEXT_KEY]
            main_ctx = conn(Context)(ident=ctx_id)
            main_ctx.add_import(ctx)
            main_ctx.save_imports()
            ctx.save()
            conn.mapper.save()

    # List translators
    assertRegexpMatches(owm_project.sh('owm -o table translator list'),
                        re.compile(expected.n3(), flags=re.MULTILINE))
Пример #8
0
 def owm(**kwargs):
     r = OWM(owmdir=p(res.testdir, '.owm'), **kwargs)
     r.userdir = p(res.test_homedir, '.owmeta')
     return r
Пример #9
0
 def __init__(self):
     self.owm = OWM()
     self.ctx = self.owm.default_context.stored
Пример #10
0
class DSMethods(metaclass=OrderedClass):
    # Note: Keep the ordering of
    def __init__(self):
        self.owm = OWM()
        self.ctx = self.owm.default_context.stored

    def neurons(self):
        neurons = self.owm.translate(
            NeuronCSVDataTranslator(),
            data_sources=[NeuronCSVDataSource(key='neurons')],
            output_key='neurons')
        self.ctx(neurons).description(
            "Contains descriptions of C. elegans neurons and is the"
            " principle such list for OpenWorm")

    def wormatlas_cells(self):
        cells = self.owm.translate(
            WormAtlasCellListDataTranslator(),
            data_sources=[
                WormAtlasCellListDataSource(key='cells'),
                DWEDS(key='neurons')
            ],
            output_key='cells')
        self.ctx(cells).description(
            "Lineage names and descriptions of C. elegans cells from Worm Atlas"
        )

    def ion_channels(self):
        ion_channels = self.owm.translate(
            WormbaseIonChannelCSVTranslator(),
            data_sources=[WormbaseIonChannelCSVDataSource(key='ion_channels')],
            output_key='ion_channels')
        self.ctx(ion_channels).description(
            "Contains Channels and ExpressionPatterns")

    def wormbase_cells(self):
        wb_cells = self.owm.translate(
            CellWormBaseCSVTranslator(),
            data_sources=[
                WormBaseCSVDataSource(key='wormbase_celegans_cells')
            ],
            output_key='wormbase_cells')
        self.ctx(wb_cells).description(
            'Contains muscles, neurons, and other cells. Neuron data is partially'
            ' redundant to the Worm Atlas data source')

    def bently_expression(self):
        bently_expression = self.owm.translate(
            NeuronCSVDataTranslator(),
            data_sources=[NeuronCSVDataSource(key='bently_expression')],
            output_key='bently_expression')
        self.ctx(bently_expression).description(
            'Adds receptor, neurotransmitter, and neuropeptide relationships for Neurons'
        )

    def muscle_ion_channels(self):
        muscle_ion_channels = self.owm.translate(
            WormbaseTextMatchCSVTranslator(),
            data_sources=[
                WormbaseTextMatchCSVDataSource(key='muscle_ion_channels')
            ],
            output_key='muscle_ion_channels')
        self.ctx(muscle_ion_channels).description(
            'Adds relationships between muscles and ion channels')

    def neuron_ion_channels(self):
        neuron_ion_channels = self.owm.translate(
            WormbaseTextMatchCSVTranslator(),
            data_sources=[
                WormbaseTextMatchCSVDataSource(key='neuron_ion_channels')
            ],
            output_key='neuron_ion_channels')
        self.ctx(neuron_ion_channels).description(
            'Adds relationships between neurons and ion channels')

    def connectome(self):
        emmons_connectome = self.owm.translate(
            NeuronConnectomeCSVTranslator(),
            data_sources=[ConnectomeCSVDataSource(key='emmons')],
            named_data_sources=dict(muscles_source=DWEDS(key='wormbase_cells'),
                                    neurons_source=DWEDS(key='neurons')),
            output_key='connectome')
        self.ctx(emmons_connectome).description('C. elegans connectome')

    def synclass(self):
        connectome_synclass = self.owm.translate(
            NeuronConnectomeSynapseClassTranslator(),
            data_sources=[DWEDS(key='connectome')],
            named_data_sources=dict(
                neurotransmitter_source=ConnectomeCSVDataSource(
                    key='connectome')),
            output_key='synclass')
        self.ctx(connectome_synclass).description(
            'Adds inferred relationships between connections and neurotransmitters that'
            ' mediates communication')

    def openworm_data(self):
        combined_data_source = self.owm.translate(
            ContextMergeDataTranslator(),
            data_sources=[
                DWEDS(key='neurons'),
                DWEDS(key='wormbase_cells'),
                DWEDS(key='ion_channels'),
                DWEDS(key='bently_expression'),
                DWEDS(key='muscle_ion_channels'),
                DWEDS(key='neuron_ion_channels'),
                DWEDS(key='connectome'),
                DWEDS(key='synclass'),
                DWEDS(key='cells'),
            ],
            output_identifier='http://openworm.org/data')

    def methods(self):
        return list(x for x in self.member_names
                    if x not in ('save', 'methods') and not x.startswith('_')
                    and isinstance(getattr(self, x), types.MethodType))

    def save(self):
        self.ctx.save()
def fetch_ma_mapping():
    """Fetch associations between monoamines and their receptors from Bentley data.

    :return: dict from full monoamine names (title case) to cognate receptor gene names (upper case).
    """
    url = BASE_URL + "monoamine_receptor_expression.tsv"
    mapping = defaultdict(set)
    for row in csv.DictReader(decode_lines(urlopen(url)), delimiter='\t'):
        if int(row.get("excluded", 0)):
            continue
        mapping[row["monoamine"].title()].add(row["receptor"].upper())
    return mapping


with OWM('../.owm').connect() as conn:
    ctx = conn(Context)(ident="http://openworm.org/data").stored
    #Get the worm object.
    worm = ctx(Worm).query()
    #Extract the network object from the worm object.
    net = worm.neuron_network()

    cell_transmitter_mapping, receptor_cell_mapping = get_mappings()

    ma_t_r_mapping = fetch_ma_mapping()
    ma_edges = list(
        get_possible_extrasynaptic_edges(cell_transmitter_mapping,
                                         ma_t_r_mapping,
                                         receptor_cell_mapping))

    np_t_r_mapping = fetch_np_mapping()