def run(gParameters): print('Params:', gParameters) file_train = gParameters['train_data'] file_test = gParameters['test_data'] url = gParameters['data_url'] train_file = data_utils.get_file(file_train, url + file_train, cache_subdir='Pilot1') test_file = data_utils.get_file(file_test, url + file_test, cache_subdir='Pilot1') X_train, Y_train, X_test, Y_test = load_data(train_file, test_file, gParameters) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) print('Y_train shape:', Y_train.shape) print('Y_test shape:', Y_test.shape) x_train_len = X_train.shape[1] # this reshaping is critical for the Conv1D to work X_train = np.expand_dims(X_train, axis=2) X_test = np.expand_dims(X_test, axis=2) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) model = Sequential() layer_list = list(range(0, len(gParameters['conv']), 3)) for l, i in enumerate(layer_list): filters = gParameters['conv'][i] filter_len = gParameters['conv'][i + 1] stride = gParameters['conv'][i + 2] print(int(i / 3), filters, filter_len, stride) if gParameters['pool']: pool_list = gParameters['pool'] if type(pool_list) != list: pool_list = list(pool_list) if filters <= 0 or filter_len <= 0 or stride <= 0: break if 'locally_connected' in gParameters: model.add( LocallyConnected1D(filters, filter_len, strides=stride, padding='valid', input_shape=(x_train_len, 1))) else: #input layer if i == 0: model.add( Conv1D(filters=filters, kernel_size=filter_len, strides=stride, padding='valid', input_shape=(x_train_len, 1))) else: model.add( Conv1D(filters=filters, kernel_size=filter_len, strides=stride, padding='valid')) model.add(Activation(gParameters['activation'])) if gParameters['pool']: model.add(MaxPooling1D(pool_size=pool_list[int(i / 3)])) model.add(Flatten()) for layer in gParameters['dense']: if layer: model.add(Dense(layer)) model.add(Activation(gParameters['activation'])) # This has to be disabled for tensorrt otherwise I am getting an error if False and gParameters['drop']: model.add(Dropout(gParameters['drop'])) #model.add(Dense(gParameters['classes'])) #model.add(Activation(gParameters['out_act']), name='activation_5') model.add( Dense(gParameters['classes'], activation=gParameters['out_act'], name='activation_5')) #Reference case #model.add(Conv1D(filters=128, kernel_size=20, strides=1, padding='valid', input_shape=(P, 1))) #model.add(Activation('relu')) #model.add(MaxPooling1D(pool_size=1)) #model.add(Conv1D(filters=128, kernel_size=10, strides=1, padding='valid')) #model.add(Activation('relu')) #model.add(MaxPooling1D(pool_size=10)) #model.add(Flatten()) #model.add(Dense(200)) #model.add(Activation('relu')) #model.add(Dropout(0.1)) #model.add(Dense(20)) #model.add(Activation('relu')) #model.add(Dropout(0.1)) #model.add(Dense(CLASSES)) #model.add(Activation('softmax')) kerasDefaults = p1_common.keras_default_config() # Define optimizer optimizer = p1_common_keras.build_optimizer(gParameters['optimizer'], gParameters['learning_rate'], kerasDefaults) model.summary() for layer in model.layers: print(layer.name) print([x.op.name for x in model.outputs]) model.compile(loss=gParameters['loss'], optimizer=optimizer, metrics=[gParameters['metrics']]) output_dir = gParameters['save'] if not os.path.exists(output_dir): os.makedirs(output_dir) # calculate trainable and non-trainable params gParameters.update(compute_trainable_params(model)) # set up a bunch of callbacks to do work during model training.. model_name = gParameters['model_name'] path = '{}/{}.autosave.model.h5'.format(output_dir, model_name) # checkpointer = ModelCheckpoint(filepath=path, verbose=1, save_weights_only=False, save_best_only=True) csv_logger = CSVLogger('{}/training.log'.format(output_dir)) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=1, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0) candleRemoteMonitor = CandleRemoteMonitor(params=gParameters) timeoutMonitor = TerminateOnTimeOut(TIMEOUT) history = model.fit( X_train, Y_train, batch_size=gParameters['batch_size'], epochs=2, #gParameters['epochs'], verbose=1, validation_data=(X_test, Y_test), callbacks=[csv_logger, reduce_lr, candleRemoteMonitor, timeoutMonitor]) score = model.evaluate(X_test, Y_test, verbose=0) #Begin tensorrt code config = { # Where to save models (Tensorflow + TensorRT) "graphdef_file": "/gpfs/jlse-fs0/users/pbalapra/tensorrt/Benchmarks/Pilot1/NT3/nt3.pb", "frozen_model_file": "/gpfs/jlse-fs0/users/pbalapra/tensorrt/Benchmarks/Pilot1/NT3/nt3_frozen_model.pb", "snapshot_dir": "/gpfs/jlse-fs0/users/pbalapra/tensorrt/Benchmarks/Pilot1/NT3/snapshot", "engine_save_dir": "/gpfs/jlse-fs0/users/pbalapra/tensorrt/Benchmarks/Pilot1/NT3", # Needed for TensorRT "inference_batch_size": 1, # inference batch size "input_layer": "conv1d_1", # name of the input tensor in the TF computational graph "out_layer": "activation_5/Softmax", # name of the output tensorf in the TF conputational graph "output_size": 2, # number of classes in output (5) "precision": "fp32" # desired precision (fp32, fp16) "test_image_path" : "/home/data/val/roses" } # Now, let's use the Tensorflow backend to get the TF graphdef and frozen graph K.set_learning_phase(0) sess = K.get_session() saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V2) # save model weights in TF checkpoint checkpoint_path = saver.save(sess, config['snapshot_dir'], global_step=0, latest_filename='checkpoint_state') # remove nodes not needed for inference from graph def train_graph = sess.graph inference_graph = tf.graph_util.remove_training_nodes( train_graph.as_graph_def()) #print(len([n.name for n in tf.get_default_graph().as_graph_def().node])) # write the graph definition to a file. # You can view this file to see your network structure and # to determine the names of your network's input/output layers. graph_io.write_graph(inference_graph, '.', config['graphdef_file']) # specify which layer is the output layer for your graph. # In this case, we want to specify the softmax layer after our # last dense (fully connected) layer. out_names = config['out_layer'] # freeze your inference graph and save it for later! (Tensorflow) freeze_graph.freeze_graph(config['graphdef_file'], '', False, checkpoint_path, out_names, "save/restore_all", "save/Const:0", config['frozen_model_file'], False, "") if False: print('Test score:', score[0]) print('Test accuracy:', score[1]) # serialize model to JSON model_json = model.to_json() with open("{}/{}.model.json".format(output_dir, model_name), "w") as json_file: json_file.write(model_json) # serialize model to YAML model_yaml = model.to_yaml() with open("{}/{}.model.yaml".format(output_dir, model_name), "w") as yaml_file: yaml_file.write(model_yaml) # serialize weights to HDF5 model.save_weights("{}/{}.weights.h5".format(output_dir, model_name)) print("Saved model to disk") # load json and create model json_file = open('{}/{}.model.json'.format(output_dir, model_name), 'r') loaded_model_json = json_file.read() json_file.close() loaded_model_json = model_from_json(loaded_model_json) # load yaml and create model yaml_file = open('{}/{}.model.yaml'.format(output_dir, model_name), 'r') loaded_model_yaml = yaml_file.read() yaml_file.close() loaded_model_yaml = model_from_yaml(loaded_model_yaml) # load weights into new model loaded_model_json.load_weights('{}/{}.weights.h5'.format( output_dir, model_name)) print("Loaded json model from disk") # evaluate json loaded model on test data loaded_model_json.compile(loss=gParameters['loss'], optimizer=gParameters['optimizer'], metrics=[gParameters['metrics']]) score_json = loaded_model_json.evaluate(X_test, Y_test, verbose=0) print('json Test score:', score_json[0]) print('json Test accuracy:', score_json[1]) print("json %s: %.2f%%" % (loaded_model_json.metrics_names[1], score_json[1] * 100)) # load weights into new model loaded_model_yaml.load_weights('{}/{}.weights.h5'.format( output_dir, model_name)) print("Loaded yaml model from disk") # evaluate loaded model on test data loaded_model_yaml.compile(loss=gParameters['loss'], optimizer=gParameters['optimizer'], metrics=[gParameters['metrics']]) score_yaml = loaded_model_yaml.evaluate(X_test, Y_test, verbose=0) print('yaml Test score:', score_yaml[0]) print('yaml Test accuracy:', score_yaml[1]) print("yaml %s: %.2f%%" % (loaded_model_yaml.metrics_names[1], score_yaml[1] * 100)) return history
def run(gParameters): print ('Params:', gParameters) file_train = gParameters['train_data'] file_test = gParameters['test_data'] url = gParameters['data_url'] '''path = '/home/orlandomelchor/Desktop/Research 2018-2019/CANDLE/' tr_file = 'nt_train2.csv' te_file = 'nt_train2.csv' train_file = path + tr_file test_file = path + te_file X_train, Y_train, X_test, Y_test = load_data(train_file, test_file, gParameters)''' path = '../data-05-31-2018/' full_data_file = 'formatted_full_data.csv' X_train, Y_train, X_test, Y_test = load_data(path+full_data_file, gParameters) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) print('Y_train shape:', Y_train.shape) print('Y_test shape:', Y_test.shape) x_train_len = X_train.shape[1] # this reshaping is critical for the Conv1D to work model = Sequential() for layer in gParameters['dense']: if layer: model.add(Dense(layer,input_shape=(x_train_len,))) model.add(Activation(gParameters['activation'])) if gParameters['drop']: model.add(Dropout(gParameters['drop'])) model.add(Dense(gParameters['classes'])) model.add(Activation(gParameters['out_act'])) #Reference case #model.add(Conv1D(filters=128, kernel_size=20, strides=1, padding='valid', input_shape=(P, 1))) #model.add(Activation('relu')) #model.add(MaxPooling1D(pool_size=1)) #model.add(Conv1D(filters=128, kernel_size=10, strides=1, padding='valid')) #model.add(Activation('relu')) #model.add(MaxPooling1D(pool_size=10)) #model.add(Flatten()) #model.add(Dense(200)) #model.add(Activation('relu')) #model.add(Dropout(0.1)) #model.add(Dense(20)) #model.add(Activation('relu')) #model.add(Dropout(0.1)) #model.add(Dense(CLASSES)) #model.add(Activation('softmax')) kerasDefaults = p1_common.keras_default_config() # Define optimizer optimizer = p1_common_keras.build_optimizer(gParameters['optimizer'], gParameters['learning_rate'], kerasDefaults) model.summary() model.compile(loss=gParameters['loss'], optimizer=optimizer, metrics=[gParameters['metrics']]) output_dir = gParameters['save'] if not os.path.exists(output_dir): os.makedirs(output_dir) # calculate trainable and non-trainable params gParameters.update(compute_trainable_params(model)) # set up a bunch of callbacks to do work during model training.. model_name = gParameters['model_name'] path = '{}/{}.autosave.model.h5'.format(output_dir, model_name) # checkpointer = ModelCheckpoint(filepath=path, verbose=1, save_weights_only=False, save_best_only=True) csv_logger = CSVLogger('{}/training.log'.format(output_dir)) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=1, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0) candleRemoteMonitor = CandleRemoteMonitor(params=gParameters) timeoutMonitor = TerminateOnTimeOut(TIMEOUT) history = model.fit(X_train, Y_train, batch_size=gParameters['batch_size'], epochs=gParameters['epochs'], verbose=1, validation_data=(X_test, Y_test), callbacks = [csv_logger, reduce_lr, candleRemoteMonitor, timeoutMonitor]) score = model.evaluate(X_test, Y_test, verbose=0) if True: print('Test score:', score[0]) print('Test accuracy:', score[1]) # serialize model to JSON model_json = model.to_json() with open("{}/{}.model.json".format(output_dir, model_name), "w") as json_file: json_file.write(model_json) # serialize model to YAML model_yaml = model.to_yaml() with open("{}/{}.model.yaml".format(output_dir, model_name), "w") as yaml_file: yaml_file.write(model_yaml) # serialize model to HDF5 model.save('{}/{}_network{}.h5'.format(output_dir, model_name, i)) print("Saved model to disk") # load json and create model json_file = open('{}/{}.model.json'.format(output_dir, model_name), 'r') loaded_model_json = json_file.read() json_file.close() loaded_model_json = model_from_json(loaded_model_json) # load yaml and create model yaml_file = open('{}/{}.model.yaml'.format(output_dir, model_name), 'r') loaded_model_yaml = yaml_file.read() yaml_file.close() loaded_model_yaml = model_from_yaml(loaded_model_yaml) # load into new model loaded_model_json.load_weights('{}/{}_network{}.h5'.format(output_dir, model_name, i)) print("Loaded json model from disk") # evaluate json loaded model on test data loaded_model_json.compile(loss=gParameters['loss'], optimizer=gParameters['optimizer'], metrics=[gParameters['metrics']]) score_json = loaded_model_json.evaluate(X_test, Y_test, verbose=0) print('json Test score:', score_json[0]) print('json Test accuracy:', score_json[1]) print("json %s: %.2f%%" % (loaded_model_json.metrics_names[1], score_json[1]*100)) # load weights into new model loaded_model_yaml.load_weights('{}/{}_network{}.h5'.format(output_dir, model_name, i)) print("Loaded yaml model from disk") # evaluate loaded model on test data loaded_model_yaml.compile(loss=gParameters['loss'], optimizer=gParameters['optimizer'], metrics=[gParameters['metrics']]) score_yaml = loaded_model_yaml.evaluate(X_test, Y_test, verbose=0) print('yaml Test score:', score_yaml[0]) print('yaml Test accuracy:', score_yaml[1]) print("yaml %s: %.2f%%" % (loaded_model_yaml.metrics_names[1], score_yaml[1]*100)) acc_file = open('{}/{}_accuracy.txt'.format(output_dir, model_name),'w') acc_file.write(str(round(score_yaml[1],4)*100)) acc_file.close() return history
def main(): # Get command-line parameters parser = get_p1b2_parser() args = parser.parse_args() #print('Args:', args) # Get parameters from configuration file fileParameters = p1b2.read_config_file(args.config_file) #print ('Params:', fileParameters) # Consolidate parameter set. Command-line parameters overwrite file configuration gParameters = p1_common.args_overwrite_config(args, fileParameters) print('Params:', gParameters) # Construct extension to save model ext = p1b2.extension_from_parameters(gParameters, '.keras') logfile = args.logfile if args.logfile else args.save + ext + '.log' p1b2.logger.info('Params: {}'.format(gParameters)) # Get default parameters for initialization and optimizer functions kerasDefaults = p1_common.keras_default_config() seed = gParameters['rng_seed'] # Load dataset #(X_train, y_train), (X_test, y_test) = p1b2.load_data(gParameters, seed) (X_train, y_train), (X_val, y_val), (X_test, y_test) = p1b2.load_data_one_hot(gParameters, seed) print("Shape X_train: ", X_train.shape) print("Shape X_val: ", X_val.shape) print("Shape X_test: ", X_test.shape) print("Shape y_train: ", y_train.shape) print("Shape y_val: ", y_val.shape) print("Shape y_test: ", y_test.shape) print("Range X_train --> Min: ", np.min(X_train), ", max: ", np.max(X_train)) print("Range X_val --> Min: ", np.min(X_val), ", max: ", np.max(X_val)) print("Range X_test --> Min: ", np.min(X_test), ", max: ", np.max(X_test)) print("Range y_train --> Min: ", np.min(y_train), ", max: ", np.max(y_train)) print("Range y_val --> Min: ", np.min(y_val), ", max: ", np.max(y_val)) print("Range y_test --> Min: ", np.min(y_test), ", max: ", np.max(y_test)) input_dim = X_train.shape[1] input_vector = Input(shape=(input_dim, )) output_dim = y_train.shape[1] # Initialize weights and learning rule initializer_weights = p1_common_keras.build_initializer( gParameters['initialization'], kerasDefaults, seed) initializer_bias = p1_common_keras.build_initializer( 'constant', kerasDefaults, 0.) activation = gParameters['activation'] # Define MLP architecture layers = gParameters['dense'] if layers != None: if type(layers) != list: layers = list(layers) for i, l in enumerate(layers): if i == 0: x = Dense(l, activation=activation, kernel_initializer=initializer_weights, bias_initializer=initializer_bias, kernel_regularizer=l2(gParameters['penalty']), activity_regularizer=l2( gParameters['penalty']))(input_vector) else: x = Dense(l, activation=activation, kernel_initializer=initializer_weights, bias_initializer=initializer_bias, kernel_regularizer=l2(gParameters['penalty']), activity_regularizer=l2(gParameters['penalty']))(x) if gParameters['drop']: x = Dropout(gParameters['drop'])(x) output = Dense(output_dim, activation=activation, kernel_initializer=initializer_weights, bias_initializer=initializer_bias)(x) else: output = Dense(output_dim, activation=activation, kernel_initializer=initializer_weights, bias_initializer=initializer_bias)(input_vector) # Build MLP model mlp = Model(outputs=output, inputs=input_vector) p1b2.logger.debug('Model: {}'.format(mlp.to_json())) # Define optimizer optimizer = p1_common_keras.build_optimizer(gParameters['optimizer'], gParameters['learning_rate'], kerasDefaults) # Compile and display model mlp.compile(loss=gParameters['loss'], optimizer=optimizer, metrics=['accuracy']) mlp.summary() # Seed random generator for training np.random.seed(seed) mlp.fit(X_train, y_train, batch_size=gParameters['batch_size'], epochs=gParameters['epochs'], validation_data=(X_val, y_val)) # model save #save_filepath = "model_mlp_W_" + ext #mlp.save_weights(save_filepath) # Evalute model on test set y_pred = mlp.predict(X_test) scores = p1b2.evaluate_accuracy_one_hot(y_pred, y_test) print('Evaluation on test data:', scores)
def run(gParameters): print('Params:', gParameters) file_train = gParameters['train_data'] file_test = gParameters['test_data'] url = gParameters['data_url'] train_file = data_utils.get_file(file_train, url + file_train, cache_subdir='Pilot1') test_file = data_utils.get_file(file_test, url + file_test, cache_subdir='Pilot1') X_train, Y_train, X_test, Y_test = load_data(train_file, test_file, gParameters) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) print('Y_train shape:', Y_train.shape) print('Y_test shape:', Y_test.shape) x_train_len = X_train.shape[1] # this reshaping is critical for the Conv1D to work X_train = np.expand_dims(X_train, axis=2) X_test = np.expand_dims(X_test, axis=2) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) model = Sequential() layer_list = list(range(0, len(gParameters['conv']), 3)) for l, i in enumerate(layer_list): filters = gParameters['conv'][i] filter_len = gParameters['conv'][i + 1] stride = gParameters['conv'][i + 2] print(int(i / 3), filters, filter_len, stride) if gParameters['pool']: pool_list = gParameters['pool'] if type(pool_list) != list: pool_list = list(pool_list) if filters <= 0 or filter_len <= 0 or stride <= 0: break if 'locally_connected' in gParameters: model.add( LocallyConnected1D(filters, filter_len, strides=stride, padding='valid', input_shape=(x_train_len, 1))) else: #input layer if i == 0: model.add( Conv1D(filters=filters, kernel_size=filter_len, strides=stride, padding='valid', input_shape=(x_train_len, 1))) else: model.add( Conv1D(filters=filters, kernel_size=filter_len, strides=stride, padding='valid')) model.add(Activation(gParameters['activation'])) if gParameters['pool']: model.add(MaxPooling1D(pool_size=pool_list[int(i / 3)])) model.add(Flatten()) for layer in gParameters['dense']: if layer: model.add(Dense(layer)) model.add(Activation(gParameters['activation'])) if gParameters['drop']: model.add(Dropout(gParameters['drop'])) model.add(Dense(gParameters['classes'])) model.add(Activation(gParameters['out_act'])) #Reference case #model.add(Conv1D(filters=128, kernel_size=20, strides=1, padding='valid', input_shape=(P, 1))) #model.add(Activation('relu')) #model.add(MaxPooling1D(pool_size=1)) #model.add(Conv1D(filters=128, kernel_size=10, strides=1, padding='valid')) #model.add(Activation('relu')) #model.add(MaxPooling1D(pool_size=10)) #model.add(Flatten()) #model.add(Dense(200)) #model.add(Activation('relu')) #model.add(Dropout(0.1)) #model.add(Dense(20)) #model.add(Activation('relu')) #model.add(Dropout(0.1)) #model.add(Dense(CLASSES)) #model.add(Activation('softmax')) kerasDefaults = p1_common.keras_default_config() # Define optimizer optimizer = p1_common_keras.build_optimizer(gParameters['optimizer'], gParameters['learning_rate'], kerasDefaults) model.summary() model.compile(loss=gParameters['loss'], optimizer=optimizer, metrics=[gParameters['metrics']]) output_dir = gParameters['save'] if not os.path.exists(output_dir): os.makedirs(output_dir) # calculate trainable and non-trainable params gParameters.update(compute_trainable_params(model)) # set up a bunch of callbacks to do work during model training.. model_name = gParameters['model_name'] path = '{}/{}.autosave.model.h5'.format(output_dir, model_name) # checkpointer = ModelCheckpoint(filepath=path, verbose=1, save_weights_only=False, save_best_only=True) csv_logger = CSVLogger('{}/training.log'.format(output_dir)) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=1, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0) candleRemoteMonitor = CandleRemoteMonitor(params=gParameters) timeoutMonitor = TerminateOnTimeOut(TIMEOUT) history = model.fit( X_train, Y_train, batch_size=gParameters['batch_size'], epochs=gParameters['epochs'], verbose=1, validation_data=(X_test, Y_test), callbacks=[csv_logger, reduce_lr, candleRemoteMonitor, timeoutMonitor]) score = model.evaluate(X_test, Y_test, verbose=0) if False: print('Test score:', score[0]) print('Test accuracy:', score[1]) # serialize model to JSON model_json = model.to_json() with open("{}/{}.model.json".format(output_dir, model_name), "w") as json_file: json_file.write(model_json) # serialize model to YAML model_yaml = model.to_yaml() with open("{}/{}.model.yaml".format(output_dir, model_name), "w") as yaml_file: yaml_file.write(model_yaml) # serialize weights to HDF5 model.save_weights("{}/{}.weights.h5".format(output_dir, model_name)) print("Saved model to disk") # load json and create model json_file = open('{}/{}.model.json'.format(output_dir, model_name), 'r') loaded_model_json = json_file.read() json_file.close() loaded_model_json = model_from_json(loaded_model_json) # load yaml and create model yaml_file = open('{}/{}.model.yaml'.format(output_dir, model_name), 'r') loaded_model_yaml = yaml_file.read() yaml_file.close() loaded_model_yaml = model_from_yaml(loaded_model_yaml) # load weights into new model loaded_model_json.load_weights('{}/{}.weights.h5'.format( output_dir, model_name)) print("Loaded json model from disk") # evaluate json loaded model on test data loaded_model_json.compile(loss=gParameters['loss'], optimizer=gParameters['optimizer'], metrics=[gParameters['metrics']]) score_json = loaded_model_json.evaluate(X_test, Y_test, verbose=0) print('json Test score:', score_json[0]) print('json Test accuracy:', score_json[1]) print("json %s: %.2f%%" % (loaded_model_json.metrics_names[1], score_json[1] * 100)) # load weights into new model loaded_model_yaml.load_weights('{}/{}.weights.h5'.format( output_dir, model_name)) print("Loaded yaml model from disk") # evaluate loaded model on test data loaded_model_yaml.compile(loss=gParameters['loss'], optimizer=gParameters['optimizer'], metrics=[gParameters['metrics']]) score_yaml = loaded_model_yaml.evaluate(X_test, Y_test, verbose=0) print('yaml Test score:', score_yaml[0]) print('yaml Test accuracy:', score_yaml[1]) print("yaml %s: %.2f%%" % (loaded_model_yaml.metrics_names[1], score_yaml[1] * 100)) return history
def run(gParameters): """ Runs the model using the specified set of parameters Args: gParameters: a python dictionary containing the parameters (e.g. epoch) to run the model with. """ # if 'dense' in gParameters: dval = gParameters['dense'] if type(dval) != list: res = list(dval) #try: #is_str = isinstance(dval, basestring) #except NameError: #is_str = isinstance(dval, str) #if is_str: #res = str2lst(dval) gParameters['dense'] = res print(gParameters['dense']) if 'conv' in gParameters: #conv_list = p1_common.parse_conv_list(gParameters['conv']) #cval = gParameters['conv'] #try: #is_str = isinstance(cval, basestring) #except NameError: #is_str = isinstance(cval, str) #if is_str: #res = str2lst(cval) #gParameters['conv'] = res print('Conv input', gParameters['conv']) # print('Params:', gParameters) # Construct extension to save model ext = p1b3.extension_from_parameters(gParameters, '.keras') logfile = gParameters['logfile'] if gParameters[ 'logfile'] else gParameters['save'] + ext + '.log' fh = logging.FileHandler(logfile) fh.setFormatter( logging.Formatter("[%(asctime)s %(process)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S")) fh.setLevel(logging.DEBUG) sh = logging.StreamHandler() sh.setFormatter(logging.Formatter('')) sh.setLevel(logging.DEBUG if gParameters['verbose'] else logging.INFO) p1b3.logger.setLevel(logging.DEBUG) p1b3.logger.addHandler(fh) p1b3.logger.addHandler(sh) p1b3.logger.info('Params: {}'.format(gParameters)) # Get default parameters for initialization and optimizer functions kerasDefaults = p1_common.keras_default_config() seed = gParameters['rng_seed'] # Build dataset loader object loader = p1b3.DataLoader( seed=seed, dtype=gParameters['datatype'], val_split=gParameters['validation_split'], test_cell_split=gParameters['test_cell_split'], cell_features=gParameters['cell_features'], drug_features=gParameters['drug_features'], feature_subsample=gParameters['feature_subsample'], scaling=gParameters['scaling'], scramble=gParameters['scramble'], min_logconc=gParameters['min_logconc'], max_logconc=gParameters['max_logconc'], subsample=gParameters['subsample'], category_cutoffs=gParameters['category_cutoffs']) # Initialize weights and learning rule initializer_weights = p1_common_keras.build_initializer( gParameters['initialization'], kerasDefaults, seed) initializer_bias = p1_common_keras.build_initializer( 'constant', kerasDefaults, 0.) activation = gParameters['activation'] # Define model architecture gen_shape = None out_dim = 1 model = Sequential() if 'dense' in gParameters: # Build dense layers for layer in gParameters['dense']: if layer: model.add( Dense(layer, input_dim=loader.input_dim, kernel_initializer=initializer_weights, bias_initializer=initializer_bias)) if gParameters['batch_normalization']: model.add(BatchNormalization()) model.add(Activation(gParameters['activation'])) if gParameters['drop']: model.add(Dropout(gParameters['drop'])) else: # Build convolutional layers gen_shape = 'add_1d' layer_list = list(range(0, len(gParameters['conv']))) lc_flag = False if 'locally_connected' in gParameters: lc_flag = True for l, i in enumerate(layer_list): if i == 0: add_conv_layer(model, gParameters['conv'][i], input_dim=loader.input_dim, locally_connected=lc_flag) else: add_conv_layer(model, gParameters['conv'][i], locally_connected=lc_flag) if gParameters['batch_normalization']: model.add(BatchNormalization()) model.add(Activation(gParameters['activation'])) if gParameters['pool']: model.add(MaxPooling1D(pool_size=gParameters['pool'])) model.add(Flatten()) model.add(Dense(out_dim)) # Define optimizer optimizer = p1_common_keras.build_optimizer(gParameters['optimizer'], gParameters['learning_rate'], kerasDefaults) # Compile and display model model.compile(loss=gParameters['loss'], optimizer=optimizer) model.summary() p1b3.logger.debug('Model: {}'.format(model.to_json())) train_gen = p1b3.DataGenerator( loader, batch_size=gParameters['batch_size'], shape=gen_shape, name='train_gen', cell_noise_sigma=gParameters['cell_noise_sigma']).flow() val_gen = p1b3.DataGenerator(loader, partition='val', batch_size=gParameters['batch_size'], shape=gen_shape, name='val_gen').flow() val_gen2 = p1b3.DataGenerator(loader, partition='val', batch_size=gParameters['batch_size'], shape=gen_shape, name='val_gen2').flow() test_gen = p1b3.DataGenerator(loader, partition='test', batch_size=gParameters['batch_size'], shape=gen_shape, name='test_gen').flow() train_steps = int(loader.n_train / gParameters['batch_size']) val_steps = int(loader.n_val / gParameters['batch_size']) test_steps = int(loader.n_test / gParameters['batch_size']) if 'train_steps' in gParameters: train_steps = gParameters['train_steps'] if 'val_steps' in gParameters: val_steps = gParameters['val_steps'] if 'test_steps' in gParameters: test_steps = gParameters['test_steps'] checkpointer = ModelCheckpoint(filepath=gParameters['save'] + '.model' + ext + '.h5', save_best_only=True) progbar = MyProgbarLogger(train_steps * gParameters['batch_size']) loss_history = MyLossHistory( progbar=progbar, val_gen=val_gen2, test_gen=test_gen, val_steps=val_steps, test_steps=test_steps, metric=gParameters['loss'], category_cutoffs=gParameters['category_cutoffs'], ext=ext, pre=gParameters['save']) # Seed random generator for training np.random.seed(seed) candleRemoteMonitor = CandleRemoteMonitor(params=gParameters) history = model.fit_generator( train_gen, train_steps, epochs=gParameters['epochs'], validation_data=val_gen, validation_steps=val_steps, verbose=0, callbacks=[checkpointer, loss_history, progbar, candleRemoteMonitor], pickle_safe=True, workers=gParameters['workers']) p1b3.logger.removeHandler(fh) p1b3.logger.removeHandler(sh) return history