MediumDensity = 5 def get_intrinsic_matrix(frame): intrinsics = frame.profile.as_video_stream_profile().intrinsics out = np.identity(3) out[0, 0] = intrinsics.fx out[1, 1] = intrinsics.fy out[0, 2] = intrinsics.ppx out[1, 2] = intrinsics.ppy return out if __name__ == "__main__": pp.vizspawn(host=args.host) # Create a pipeline pipeline = rs.pipeline() #Create a config and configure the pipeline to stream # different resolutions of color and depth streams config = rs.config() config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 30) # Start streaming profile = pipeline.start(config) depth_sensor = profile.get_device().first_depth_sensor()
out = np.identity(3) out[0, 0] = intrinsics.fx out[1, 1] = intrinsics.fy out[0, 2] = intrinsics.ppx out[1, 2] = intrinsics.ppy return out if __name__ == "__main__": params = { "dist_thresh": (0.03, 0.0, 0.1), "voxel_size": (0.01, 0.0, 0.1), "point_size_thresh": (100, 0, 1000) } pp.vizspawn(host=args.host, params=params) # Create a pipeline pipeline = rs.pipeline() #Create a config and configure the pipeline to stream # different resolutions of color and depth streams config = rs.config() config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 30) # Start streaming profile = pipeline.start(config) depth_sensor = profile.get_device().first_depth_sensor()
(p0[1] - p1[1])) def calc_convexhull_area(points): hull = ConvexHull(points[:, :2]) hull_points = points[hull.vertices, :2] hull_points = np.r_[hull_points, [hull_points[0]]] hull_mean = hull_points.mean(axis=0) area = 0 for i in range(len(hull_points) - 1): area += calc_triangle_area(hull_mean, hull_points[i], hull_points[i + 1]) return area pp.vizspawn() # Segment plane pc = pp.io.load_pcd('data/test0.pcd') pc = pp.filter.remove_invalid_points(pc) pc = pp.filter.voxel_grid_filter(pc, 0.01) print(pc.points) plane, mask = pp.segmentation.segmentation_plane(pc, dist_thresh=0.01) print(plane, sum(mask)) # Rotate to plane coordinate axis = np.array([-plane[1], plane[0], 0.0]) axis /= np.linalg.norm(axis) angle = np.arccos(plane[2] / np.linalg.norm(plane[:3])) trans = np.identity(4) trans[:3, :3] = t3d.axangles.axangle2mat(axis, angle)