def setup_model(config, prepared, **kwargs): """ Create a model Parameters ---------- config : CfgNode Model configuration (cf. configs/default_config.py) prepared : bool True if the model has been prepared before kwargs : dict Extra parameters for the model Returns ------- model : nn.Module Created model """ print0(pcolor('Model: %s' % config.name, 'yellow')) model = load_class(config.name, paths=['packnet_sfm.models',])( **{**config.loss, **kwargs}) # Add depth network if required if 'depth_net' in model.network_requirements: model.add_depth_net(setup_depth_net(config.depth_net, prepared)) # Add pose network if required if 'pose_net' in model.network_requirements: model.add_pose_net(setup_pose_net(config.pose_net, prepared)) # If a checkpoint is provided, load pretrained model if not prepared and config.checkpoint_path is not '': model = load_network(model, config.checkpoint_path, 'model') # Return model return model
def get_default_config(cfg_default): """Get default configuration from file""" config = load_class('get_cfg_defaults', paths=[cfg_default.replace('/', '.')], concat=False)() config.merge_from_list(['default', cfg_default]) return config
def setup_model(config, prepared, **kwargs): """ Create a model Parameters ---------- config : CfgNode Model configuration (cf. configs/default_config.py) prepared : bool True if the model has been prepared before kwargs : dict Extra parameters for the model Returns ------- model : nn.Module Created model """ print0(pcolor('Model: %s' % config.name, 'yellow')) # SfmModel, SelfSupModel, VelSupModel loaded model = load_class(config.name, paths=['packnet_sfm.models',])( **{**config.loss, **kwargs}) # Add depth network if required if model.network_requirements['depth_net']: model.add_depth_net(setup_depth_net(config.depth_net, prepared, num_scales=config.loss.num_scales, min_depth=config.params.min_depth, max_depth=config.params.max_depth, upsample_depth_maps=config.loss.upsample_depth_maps )) # Add pose network if required if model.network_requirements['pose_net']: model.add_pose_net( setup_pose_net(config.pose_net, prepared, rotation_mode=config.loss.rotation_mode, **kwargs)) # If a checkpoint is provided, load pretrained model if not prepared and config.checkpoint_path is not '': model = load_network(model, config.checkpoint_path, 'model') # Return model return model