def __call__(self, partitioned_graph, machine):
        """

        :param partitioned_graph: The partitioned_graph to measure
        :type partitioned_graph:\
                    :py:class:`pacman.model.partitioned_graph.partitioned_graph.PartitionedGraph`
        :return: The size of the graph in number of chips
        :rtype: int
        """

        # check that the algorithm can handle the constraints
        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=partitioned_graph.subvertices,
            supported_constraints=[PlacerChipAndCoreConstraint],
            abstract_constraint_type=AbstractPlacerConstraint)

        ordered_subverts = utility_calls.sort_objects_by_constraint_authority(
            partitioned_graph.subvertices)

        # Iterate over subvertices and allocate
        progress_bar = ProgressBar(len(ordered_subverts),
                                   "Measuring the partitioned graph")
        resource_tracker = ResourceTracker(machine)
        for subvertex in ordered_subverts:
            resource_tracker.allocate_constrained_resources(
                subvertex.resources_required, subvertex.constraints)
            progress_bar.update()
        progress_bar.end()
        return {'n_chips': len(resource_tracker.keys)}
Пример #2
0
    def _do_allocation(self, ordered_subverts, placements, machine):

        # Iterate over subvertices and generate placements
        progress_bar = ProgressBar(len(ordered_subverts),
                                   "Placing graph vertices")
        resource_tracker = ResourceTracker(
            machine, self._generate_radial_chips(machine))

        # iterate over subverts
        for subvertex_list in ordered_subverts:

            # if too many one to ones to fit on a chip, allocate individually
            if len(subvertex_list) > self.MAX_CORES_PER_CHIP_TO_CONSIDER:
                for subvertex in subvertex_list:
                    self._allocate_individual(subvertex, placements,
                                              progress_bar, resource_tracker)
            else:  # can allocate in one block

                # merge constraints
                placement_constraint, ip_tag_constraints, \
                    reverse_ip_tag_constraints = \
                    self._merge_constraints(subvertex_list)
                # locate most cores on a chip
                max_size_on_a_chip = resource_tracker.\
                    max_available_cores_on_chips_that_satisfy(
                        placement_constraint, ip_tag_constraints,
                        reverse_ip_tag_constraints)

                # if size fits block allocate, otherwise allocate individually
                if max_size_on_a_chip < len(subvertex_list):

                    # collect resource requirement
                    resources = list()
                    for subvert in subvertex_list:
                        resources.append(subvert.resources_required)

                    # get cores
                    cores = resource_tracker.allocate_group(
                        resources, placement_constraint, ip_tag_constraints,
                        reverse_ip_tag_constraints)

                    # allocate cores to subverts
                    for subvert, (x, y, p, _, _) in zip(subvertex_list, cores):
                        placement = Placement(subvert, x, y, p)
                        placements.add_placement(placement)
                        progress_bar.update()
                else:
                    for subvertex in subvertex_list:
                        self._allocate_individual(subvertex, placements,
                                                  progress_bar,
                                                  resource_tracker)
        progress_bar.end()
Пример #3
0
    def __call__(self, partitioned_graph, machine):

        # check that the algorithm can handle the constraints
        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=partitioned_graph.subvertices,
            supported_constraints=[
                PlacerRadialPlacementFromChipConstraint,
                TagAllocatorRequireIptagConstraint,
                TagAllocatorRequireReverseIptagConstraint,
                PlacerChipAndCoreConstraint],
            abstract_constraint_type=AbstractPlacerConstraint)

        placements = Placements()
        ordered_subverts = utility_calls.sort_objects_by_constraint_authority(
            partitioned_graph.subvertices)

        # Iterate over subvertices and generate placements
        progress_bar = ProgressBar(len(ordered_subverts),
                                   "Placing graph vertices")
        resource_tracker = ResourceTracker(
            machine, self._generate_radial_chips(machine))
        for vertex in ordered_subverts:
            self._place_vertex(vertex, resource_tracker, machine, placements)
            progress_bar.update()
        progress_bar.end()
        return {'placements': placements}
Пример #4
0
    def __call__(self, partitioned_graph, machine):
        """ Place a partitioned_graph so that each subvertex is placed on a\
                    core

        :param partitioned_graph: The partitioned_graph to place
        :type partitioned_graph:\
                    :py:class:`pacman.model.partitioned_graph.partitioned_graph.PartitionedGraph`
        :return: A set of placements
        :rtype: :py:class:`pacman.model.placements.placements.Placements`
        :raise pacman.exceptions.PacmanPlaceException: If something\
                   goes wrong with the placement
        """

        # check that the algorithm can handle the constraints
        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=partitioned_graph.subvertices,
            supported_constraints=[PlacerChipAndCoreConstraint],
            abstract_constraint_type=AbstractPlacerConstraint)

        placements = Placements()
        ordered_subverts = utility_calls.sort_objects_by_constraint_authority(
            partitioned_graph.subvertices)

        # Iterate over subvertices and generate placements
        progress_bar = ProgressBar(len(ordered_subverts),
                                   "Placing graph vertices")
        resource_tracker = ResourceTracker(machine)
        for subvertex in ordered_subverts:

            # Create and store a new placement anywhere on the board
            (x, y, p, _, _) = resource_tracker.allocate_constrained_resources(
                subvertex.resources_required, subvertex.constraints)
            placement = Placement(subvertex, x, y, p)
            placements.add_placement(placement)
            progress_bar.update()
        progress_bar.end()
        return {'placements': placements}
Пример #5
0
    def __call__(self, partitioned_graph, machine):
        """ Place a partitioned_graph so that each subvertex is placed on a\
                    core

        :param partitioned_graph: The partitioned_graph to place
        :type partitioned_graph:\
                    :py:class:`pacman.model.partitioned_graph.partitioned_graph.PartitionedGraph`
        :return: A set of placements
        :rtype: :py:class:`pacman.model.placements.placements.Placements`
        :raise pacman.exceptions.PacmanPlaceException: If something\
                   goes wrong with the placement
        """

        # check that the algorithm can handle the constraints
        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=partitioned_graph.subvertices,
            supported_constraints=[PlacerChipAndCoreConstraint],
            abstract_constraint_type=AbstractPlacerConstraint)

        placements = Placements()
        ordered_subverts = utility_calls.sort_objects_by_constraint_authority(
            partitioned_graph.subvertices)

        # Iterate over subvertices and generate placements
        progress_bar = ProgressBar(len(ordered_subverts),
                                   "Placing graph vertices")
        resource_tracker = ResourceTracker(machine)
        for subvertex in ordered_subverts:

            # Create and store a new placement anywhere on the board
            (x, y, p, _, _) = resource_tracker.allocate_constrained_resources(
                subvertex.resources_required, subvertex.constraints)
            placement = Placement(subvertex, x, y, p)
            placements.add_placement(placement)
            progress_bar.update()
        progress_bar.end()
        return {'placements': placements}
Пример #6
0
    def __call__(self, graph, machine):

        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=graph.vertices,
            supported_constraints=[PartitionerMaximumSizeConstraint],
            abstract_constraint_type=AbstractPartitionerConstraint)

        # start progress bar
        progress_bar = ProgressBar(len(graph.vertices),
                                   "Partitioning graph vertices")
        vertices = graph.vertices
        subgraph = PartitionedGraph(label="partitioned_graph for partitionable"
                                          "_graph {}".format(graph.label))
        graph_to_subgraph_mapper = GraphMapper(graph.label, subgraph.label)
        resource_tracker = ResourceTracker(machine)

        # Partition one vertex at a time
        for vertex in vertices:

            # Get the usage of the first atom, then assume that this
            # will be the usage of all the atoms
            requirements = vertex.get_resources_used_by_atoms(Slice(0, 1),
                                                              graph)

            # Locate the maximum resources available
            max_resources_available = \
                resource_tracker.get_maximum_constrained_resources_available(
                    vertex.constraints)

            # Find the ratio of each of the resources - if 0 is required,
            # assume the ratio is the max available
            atoms_per_sdram = self._get_ratio(
                max_resources_available.sdram.get_value(),
                requirements.sdram.get_value())
            atoms_per_dtcm = self._get_ratio(
                max_resources_available.dtcm.get_value(),
                requirements.dtcm.get_value())
            atoms_per_cpu = self._get_ratio(
                max_resources_available.cpu.get_value(),
                requirements.cpu.get_value())

            max_atom_values = [atoms_per_sdram, atoms_per_dtcm, atoms_per_cpu]

            max_atoms_constraints = utility_calls.locate_constraints_of_type(
                vertex.constraints, PartitionerMaximumSizeConstraint)
            for max_atom_constraint in max_atoms_constraints:
                max_atom_values.append(max_atom_constraint.size)

            atoms_per_core = min(max_atom_values)

            # Partition into subvertices
            counted = 0
            while counted < vertex.n_atoms:

                # Determine subvertex size
                remaining = vertex.n_atoms - counted
                if remaining > atoms_per_core:
                    alloc = atoms_per_core
                else:
                    alloc = remaining

                # Create and store new subvertex, and increment elements
                #  counted
                if counted < 0 or counted + alloc - 1 < 0:
                    raise PacmanPartitionException("Not enough resources"
                                                   " available to create"
                                                   " subvertex")

                vertex_slice = Slice(counted, counted + (alloc - 1))
                subvertex_usage = vertex.get_resources_used_by_atoms(
                    vertex_slice, graph)

                subvert = vertex.create_subvertex(
                    vertex_slice, subvertex_usage,
                    "{}:{}:{}".format(vertex.label, counted,
                                      (counted + (alloc - 1))),
                    partition_algorithm_utilities.
                    get_remaining_constraints(vertex))
                subgraph.add_subvertex(subvert)
                graph_to_subgraph_mapper.add_subvertex(
                    subvert, vertex_slice, vertex)
                counted = counted + alloc

                # update allocated resources
                resource_tracker.allocate_constrained_resources(
                    subvertex_usage, vertex.constraints)

            # update and end progress bars as needed
            progress_bar.update()
        progress_bar.end()

        partition_algorithm_utilities.generate_sub_edges(
            subgraph, graph_to_subgraph_mapper, graph)

        return {'Partitioned_graph': subgraph,
                'Graph_mapper': graph_to_subgraph_mapper}
Пример #7
0
    def __call__(self, machine, placements):
        """ see AbstractTagAllocatorAlgorithm.allocate_tags
        """

        resource_tracker = ResourceTracker(machine)

        # Check that the algorithm can handle the constraints
        progress_bar = ProgressBar(placements.n_placements,
                                   "Allocating tags")
        placements_with_tags = list()
        for placement in placements.placements:
            utility_calls.check_algorithm_can_support_constraints(
                constrained_vertices=[placement.subvertex],
                supported_constraints=[
                    TagAllocatorRequireIptagConstraint,
                    TagAllocatorRequireReverseIptagConstraint
                ],
                abstract_constraint_type=AbstractTagAllocatorConstraint)
            if len(utility_calls.locate_constraints_of_type(
                    placement.subvertex.constraints,
                    AbstractTagAllocatorConstraint)):
                placements_with_tags.append(placement)
            progress_bar.update()

        # Go through and allocate the tags
        tags = Tags()
        for placement in placements_with_tags:
            vertex = placement.subvertex

            # Get the constraint details for the tags
            (board_address, ip_tags, reverse_ip_tags) =\
                utility_calls.get_ip_tag_info(vertex.constraints)

            # Allocate the tags, first-come, first-served, using the
            # fixed placement of the vertex, and the required resources
            chips = [(placement.x, placement.y)]
            resources = vertex.resources_required
            (_, _, _, returned_ip_tags, returned_reverse_ip_tags) = \
                resource_tracker.allocate_resources(
                    resources, chips, placement.p, board_address, ip_tags,
                    reverse_ip_tags)

            # Put the allocated ip tag information into the tag object
            if returned_ip_tags is not None:
                for (tag_constraint, (board_address, tag)) in zip(
                        ip_tags, returned_ip_tags):
                    ip_tag = IPTag(
                        board_address, tag, tag_constraint.ip_address,
                        tag_constraint.port, tag_constraint.strip_sdp)
                    tags.add_ip_tag(ip_tag, vertex)

            # Put the allocated reverse ip tag information into the tag object
            if returned_reverse_ip_tags is not None:
                for (tag_constraint, (board_address, tag)) in zip(
                        reverse_ip_tags, returned_reverse_ip_tags):
                    reverse_ip_tag = ReverseIPTag(
                        board_address, tag, tag_constraint.port, placement.x,
                        placement.y, placement.p, tag_constraint.sdp_port)
                    tags.add_reverse_ip_tag(reverse_ip_tag, vertex)

        progress_bar.end()
        return {'tags': tags}
    def __call__(self, machine, placements):
        """ see AbstractTagAllocatorAlgorithm.allocate_tags
        """

        resource_tracker = ResourceTracker(machine)

        # Check that the algorithm can handle the constraints
        progress_bar = ProgressBar(placements.n_placements, "Allocating tags")
        placements_with_tags = list()
        for placement in placements.placements:
            utility_calls.check_algorithm_can_support_constraints(
                constrained_vertices=[placement.subvertex],
                supported_constraints=[
                    TagAllocatorRequireIptagConstraint,
                    TagAllocatorRequireReverseIptagConstraint
                ],
                abstract_constraint_type=AbstractTagAllocatorConstraint)
            if len(
                    utility_calls.locate_constraints_of_type(
                        placement.subvertex.constraints,
                        AbstractTagAllocatorConstraint)):
                placements_with_tags.append(placement)
            progress_bar.update()

        # Go through and allocate the tags
        tags = Tags()
        for placement in placements_with_tags:
            vertex = placement.subvertex

            # Get the constraint details for the tags
            (board_address, ip_tags, reverse_ip_tags) =\
                utility_calls.get_ip_tag_info(vertex.constraints)

            # Allocate the tags, first-come, first-served, using the
            # fixed placement of the vertex, and the required resources
            chips = [(placement.x, placement.y)]
            resources = vertex.resources_required
            (_, _, _, returned_ip_tags, returned_reverse_ip_tags) = \
                resource_tracker.allocate_resources(
                    resources, chips, placement.p, board_address, ip_tags,
                    reverse_ip_tags)

            # Put the allocated ip tag information into the tag object
            if returned_ip_tags is not None:
                for (tag_constraint, (board_address,
                                      tag)) in zip(ip_tags, returned_ip_tags):
                    ip_tag = IPTag(board_address, tag,
                                   tag_constraint.ip_address,
                                   tag_constraint.port,
                                   tag_constraint.strip_sdp)
                    tags.add_ip_tag(ip_tag, vertex)

            # Put the allocated reverse ip tag information into the tag object
            if returned_reverse_ip_tags is not None:
                for (tag_constraint, (board_address,
                                      tag)) in zip(reverse_ip_tags,
                                                   returned_reverse_ip_tags):
                    reverse_ip_tag = ReverseIPTag(board_address, tag,
                                                  tag_constraint.port,
                                                  placement.x, placement.y,
                                                  placement.p,
                                                  tag_constraint.sdp_port)
                    tags.add_reverse_ip_tag(reverse_ip_tag, vertex)

        progress_bar.end()
        return {'tags': tags}
    def __call__(self, graph, machine):
        """ Partition a partitionable_graph so that each subvertex will fit\
            on a processor within the machine

        :param graph: The partitionable_graph to partition
        :type graph:\
                    :py:class:`pacman.model.graph.partitionable_graph.PartitionableGraph`
        :param machine: The machine with respect to which to partition the\
                    partitionable_graph
        :type machine: :py:class:`spinn_machine.machine.Machine`
        :return: A partitioned_graph of partitioned vertices and partitioned\
                    edges
        :rtype:\
                    :py:class:`pacman.model.partitioned_graph.partitioned_graph.PartitionedGraph`
        :raise pacman.exceptions.PacmanPartitionException: If something\
                   goes wrong with the partitioning
        """
        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=graph.vertices,
            abstract_constraint_type=AbstractPartitionerConstraint,
            supported_constraints=[PartitionerMaximumSizeConstraint,
                                   PartitionerSameSizeAsVertexConstraint])

        # Load the vertices and create the subgraph to fill
        vertices = graph.vertices
        subgraph = PartitionedGraph(
            label="partitioned graph for {}".format(graph.label))
        graph_mapper = GraphMapper(graph.label, subgraph.label)

        # sort out vertex's by constraints
        vertices = utility_calls.sort_objects_by_constraint_authority(vertices)

        # Set up the progress
        n_atoms = 0
        for vertex in vertices:
            n_atoms += vertex.n_atoms
        progress_bar = ProgressBar(n_atoms, "Partitioning graph vertices")

        resource_tracker = ResourceTracker(machine)

        # Partition one vertex at a time
        for vertex in vertices:

            # check that the vertex hasn't already been partitioned
            subverts_from_vertex = \
                graph_mapper.get_subvertices_from_vertex(vertex)

            # if not, partition
            if subverts_from_vertex is None:
                self._partition_vertex(
                    vertex, subgraph, graph_mapper, resource_tracker, graph)
            progress_bar.update(vertex.n_atoms)
        progress_bar.end()

        partition_algorithm_utilities.generate_sub_edges(
            subgraph, graph_mapper, graph)

        results = dict()
        results['partitioned_graph'] = subgraph
        results['graph_mapper'] = graph_mapper
        results['nChips'] = len(resource_tracker.keys)
        return results