Пример #1
0
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.

        Args:
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.

        Returns:
            The initialization op
        """
        block = self._check_block(block)

        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

        if self._seed == 0:
            self._seed = block.program.random_seed

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['masra_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if framework._non_static_mode():
            if self._uniform:
                limit = math.sqrt(6.0 / float(fan_in))
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype',
                                                int(out_dtype))
            else:
                std = math.sqrt(2.0 / float(fan_in))
                if in_dygraph_mode():
                    place = _current_expected_place()
                    out_var = _C_ops.final_state_gaussian_random(
                        out_var.shape, 0.0, std, self._seed, out_dtype, place)
                else:
                    out_var = _C_ops.gaussian_random('shape',
                                                     out_var.shape, 'dtype',
                                                     int(out_dtype), 'mean',
                                                     0.0, 'std', std, 'seed',
                                                     self._seed)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None
        else:
            if self._uniform:
                limit = math.sqrt(6.0 / float(fan_in))
                op = block.append_op(type="uniform_random",
                                     inputs={},
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "min": -limit,
                                         "max": limit,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)

            else:
                std = math.sqrt(2.0 / float(fan_in))
                op = block.append_op(type="gaussian_random",
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "mean": 0.0,
                                         "std": std,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })

            var.op = op
            return op
Пример #2
0
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:

    .. code-block:: text

        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random

            # example 2:
            # attr shape is a list which contains Tensor.
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
    """
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
                "uniform/rand only supports [float32, float64], but the default dtype is {}"
                .format(dtype))

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        return _C_ops.uniform_random('shape', shape, 'min', float(min), 'max',
                                     float(max), 'seed', seed, 'dtype', dtype)

    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='uniform/rand')

    helper = LayerHelper("uniform", **locals())
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="uniform_random",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"Out": out})
    out.stop_gradient = True
    return out
Пример #3
0
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.

        Args:
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.

        Returns:
            The initialization op
        """
        block = self._check_block(block)

        assert isinstance(block, framework.Block)
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
                                 "uniform_random")

        if self._seed == 0:
            self._seed = block.program.random_seed

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['uniform_random', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if framework._non_static_mode():
            out_var = _C_ops.uniform_random(
                'shape', var.shape, 'min', self._low, 'max', self._high,
                'seed', self._seed, 'dtype', out_dtype, 'diag_num',
                self._diag_num, 'diag_step', self._diag_step, 'diag_val',
                self._diag_val)
            if var.dtype == VarDesc.VarType.FP16:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None
        else:
            op = block.append_op(type="uniform_random",
                                 inputs={},
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "min": self._low,
                                     "max": self._high,
                                     "seed": self._seed,
                                     "diag_num": self._diag_num,
                                     "diag_step": self._diag_step,
                                     "diag_val": self._diag_val
                                 },
                                 stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16:
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })

            var.op = op
            return op